Spaces:
Runtime error
Runtime error
Update tasks/text.py
Browse files- tasks/text.py +4 -7
tasks/text.py
CHANGED
@@ -7,11 +7,6 @@ import random
|
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
10 |
-
import os
|
11 |
-
print('###################### ---- ##################################')
|
12 |
-
print(os.getcwd())
|
13 |
-
|
14 |
-
|
15 |
## add-on imports
|
16 |
from sentence_transformers import SentenceTransformer
|
17 |
from sklearn.preprocessing import MinMaxScaler
|
@@ -68,9 +63,11 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
68 |
#--------------------------------------------------------------------------------------------
|
69 |
|
70 |
## Models loading
|
|
|
71 |
query_prompt_name = "s2s_query"
|
72 |
model = SentenceTransformer("dunzhang/stella_en_400M_v5",trust_remote_code=True).cuda()
|
73 |
-
|
|
|
74 |
trusted_types = ['sklearn.feature_selection._univariate_selection.f_classif']
|
75 |
disp = sio.load('./tasks/logistic_regression_model.skops',trusted=trusted_types)
|
76 |
|
@@ -80,7 +77,7 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
80 |
X_scaled = scaler.fit_transform(embeddings)
|
81 |
|
82 |
## Predictions
|
83 |
-
predictions= disp.predict(X_scaled)
|
84 |
|
85 |
#--------------------------------------------------------------------------------------------
|
86 |
# YOUR MODEL INFERENCE STOPS HERE
|
|
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
## add-on imports
|
11 |
from sentence_transformers import SentenceTransformer
|
12 |
from sklearn.preprocessing import MinMaxScaler
|
|
|
63 |
#--------------------------------------------------------------------------------------------
|
64 |
|
65 |
## Models loading
|
66 |
+
# Embedding model
|
67 |
query_prompt_name = "s2s_query"
|
68 |
model = SentenceTransformer("dunzhang/stella_en_400M_v5",trust_remote_code=True).cuda()
|
69 |
+
|
70 |
+
# Pre-trained Logistic Regression model
|
71 |
trusted_types = ['sklearn.feature_selection._univariate_selection.f_classif']
|
72 |
disp = sio.load('./tasks/logistic_regression_model.skops',trusted=trusted_types)
|
73 |
|
|
|
77 |
X_scaled = scaler.fit_transform(embeddings)
|
78 |
|
79 |
## Predictions
|
80 |
+
predictions = disp.predict(X_scaled)
|
81 |
|
82 |
#--------------------------------------------------------------------------------------------
|
83 |
# YOUR MODEL INFERENCE STOPS HERE
|