Oriaz commited on
Commit
6122595
·
verified ·
1 Parent(s): bb3ba6b

Update tasks/text.py

Browse files
Files changed (1) hide show
  1. tasks/text.py +4 -7
tasks/text.py CHANGED
@@ -7,11 +7,6 @@ import random
7
  from .utils.evaluation import TextEvaluationRequest
8
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
9
 
10
- import os
11
- print('###################### ---- ##################################')
12
- print(os.getcwd())
13
-
14
-
15
  ## add-on imports
16
  from sentence_transformers import SentenceTransformer
17
  from sklearn.preprocessing import MinMaxScaler
@@ -68,9 +63,11 @@ async def evaluate_text(request: TextEvaluationRequest):
68
  #--------------------------------------------------------------------------------------------
69
 
70
  ## Models loading
 
71
  query_prompt_name = "s2s_query"
72
  model = SentenceTransformer("dunzhang/stella_en_400M_v5",trust_remote_code=True).cuda()
73
-
 
74
  trusted_types = ['sklearn.feature_selection._univariate_selection.f_classif']
75
  disp = sio.load('./tasks/logistic_regression_model.skops',trusted=trusted_types)
76
 
@@ -80,7 +77,7 @@ async def evaluate_text(request: TextEvaluationRequest):
80
  X_scaled = scaler.fit_transform(embeddings)
81
 
82
  ## Predictions
83
- predictions= disp.predict(X_scaled)
84
 
85
  #--------------------------------------------------------------------------------------------
86
  # YOUR MODEL INFERENCE STOPS HERE
 
7
  from .utils.evaluation import TextEvaluationRequest
8
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
9
 
 
 
 
 
 
10
  ## add-on imports
11
  from sentence_transformers import SentenceTransformer
12
  from sklearn.preprocessing import MinMaxScaler
 
63
  #--------------------------------------------------------------------------------------------
64
 
65
  ## Models loading
66
+ # Embedding model
67
  query_prompt_name = "s2s_query"
68
  model = SentenceTransformer("dunzhang/stella_en_400M_v5",trust_remote_code=True).cuda()
69
+
70
+ # Pre-trained Logistic Regression model
71
  trusted_types = ['sklearn.feature_selection._univariate_selection.f_classif']
72
  disp = sio.load('./tasks/logistic_regression_model.skops',trusted=trusted_types)
73
 
 
77
  X_scaled = scaler.fit_transform(embeddings)
78
 
79
  ## Predictions
80
+ predictions = disp.predict(X_scaled)
81
 
82
  #--------------------------------------------------------------------------------------------
83
  # YOUR MODEL INFERENCE STOPS HERE