Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,31 +3,38 @@ import pandas as pd
|
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
6 |
-
tokenizer
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Set the padding token to the end-of-sequence token
|
11 |
if tokenizer.pad_token is None:
|
12 |
tokenizer.pad_token = tokenizer.eos_token
|
13 |
|
14 |
-
|
|
|
15 |
|
16 |
-
#
|
17 |
def response(question):
|
18 |
-
prompt = f"Considerando os dados: {df.to_string(index=False)}, onde 'ds' está em formato DateTime, 'real' é o valor da despesa e 'group' é o grupo da despesa. Pergunta: {question}"
|
19 |
-
|
20 |
-
|
21 |
-
input_ids = inputs['input_ids']
|
22 |
|
23 |
generated_ids = model.generate(
|
24 |
-
input_ids,
|
25 |
-
attention_mask=attention_mask,
|
26 |
-
max_length=
|
27 |
temperature=0.7,
|
28 |
top_p=0.9,
|
29 |
no_repeat_ngram_size=2,
|
30 |
-
num_beams=3,
|
31 |
)
|
32 |
|
33 |
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
@@ -35,7 +42,7 @@ def response(question):
|
|
35 |
|
36 |
return final_response
|
37 |
|
38 |
-
#
|
39 |
st.markdown("""
|
40 |
<div style='display: flex; align-items: center;'>
|
41 |
<div style='width: 40px; height: 40px; background-color: green; border-radius: 50%; margin-right: 5px;'></div>
|
@@ -45,30 +52,30 @@ st.markdown("""
|
|
45 |
</div>
|
46 |
""", unsafe_allow_html=True)
|
47 |
|
48 |
-
#
|
49 |
if 'history' not in st.session_state:
|
50 |
st.session_state['history'] = []
|
51 |
|
52 |
-
#
|
53 |
user_question = st.text_input("Escreva sua questão aqui:", "")
|
54 |
|
55 |
if user_question:
|
56 |
-
#
|
57 |
st.session_state['history'].append(('👤', user_question))
|
58 |
st.markdown(f"**👤 {user_question}**")
|
59 |
|
60 |
-
#
|
61 |
bot_response = response(user_question)
|
62 |
|
63 |
-
#
|
64 |
st.session_state['history'].append(('🤖', bot_response))
|
65 |
st.markdown(f"<div style='text-align: right'>**🤖 {bot_response}**</div>", unsafe_allow_html=True)
|
66 |
|
67 |
-
#
|
68 |
if st.button("Limpar"):
|
69 |
st.session_state['history'] = []
|
70 |
|
71 |
-
#
|
72 |
for sender, message in st.session_state['history']:
|
73 |
if sender == '👤':
|
74 |
st.markdown(f"**👤 {message}**")
|
|
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
6 |
+
# Load the tokenizer and quantized model
|
7 |
+
model_name = "meta-llama/Meta-Llama-3.1-8B"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Use bitsandbytes to load the model in 8-bit precision
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, load_in_8bit=True, device_map='auto')
|
12 |
+
|
13 |
+
# Move model to the appropriate device (GPU/CPU)
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
model = model.to(device)
|
16 |
|
17 |
# Set the padding token to the end-of-sequence token
|
18 |
if tokenizer.pad_token is None:
|
19 |
tokenizer.pad_token = tokenizer.eos_token
|
20 |
|
21 |
+
# Load the anomalies data
|
22 |
+
df = pd.read_csv('anomalies.csv', sep=',', decimal='.')
|
23 |
|
24 |
+
# Function to generate a response
|
25 |
def response(question):
|
26 |
+
prompt = f"Considerando os dados: {df.to_string(index=False)}, onde a coluna 'ds' está em formato DateTime, a coluna 'real' é o valor da despesa e a coluna 'group' é o grupo da despesa. Pergunta: {question}"
|
27 |
+
|
28 |
+
inputs = tokenizer(prompt, return_tensors='pt', padding='max_length', truncation=True, max_length=256).to(device)
|
|
|
29 |
|
30 |
generated_ids = model.generate(
|
31 |
+
inputs['input_ids'],
|
32 |
+
attention_mask=inputs['attention_mask'],
|
33 |
+
max_length=inputs['input_ids'].shape[1] + 50,
|
34 |
temperature=0.7,
|
35 |
top_p=0.9,
|
36 |
no_repeat_ngram_size=2,
|
37 |
+
num_beams=3,
|
38 |
)
|
39 |
|
40 |
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
|
|
42 |
|
43 |
return final_response
|
44 |
|
45 |
+
# Streamlit interface
|
46 |
st.markdown("""
|
47 |
<div style='display: flex; align-items: center;'>
|
48 |
<div style='width: 40px; height: 40px; background-color: green; border-radius: 50%; margin-right: 5px;'></div>
|
|
|
52 |
</div>
|
53 |
""", unsafe_allow_html=True)
|
54 |
|
55 |
+
# Chat history
|
56 |
if 'history' not in st.session_state:
|
57 |
st.session_state['history'] = []
|
58 |
|
59 |
+
# Input box for user question
|
60 |
user_question = st.text_input("Escreva sua questão aqui:", "")
|
61 |
|
62 |
if user_question:
|
63 |
+
# Add person emoji when typing question
|
64 |
st.session_state['history'].append(('👤', user_question))
|
65 |
st.markdown(f"**👤 {user_question}**")
|
66 |
|
67 |
+
# Generate the response
|
68 |
bot_response = response(user_question)
|
69 |
|
70 |
+
# Add robot emoji when generating response and align to the right
|
71 |
st.session_state['history'].append(('🤖', bot_response))
|
72 |
st.markdown(f"<div style='text-align: right'>**🤖 {bot_response}**</div>", unsafe_allow_html=True)
|
73 |
|
74 |
+
# Clear history button
|
75 |
if st.button("Limpar"):
|
76 |
st.session_state['history'] = []
|
77 |
|
78 |
+
# Display chat history
|
79 |
for sender, message in st.session_state['history']:
|
80 |
if sender == '👤':
|
81 |
st.markdown(f"**👤 {message}**")
|