Spaces:
Running
Running
fschwartzer
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,21 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
from transformers import BartForConditionalGeneration, TapexTokenizer, T5ForConditionalGeneration, T5Tokenizer
|
|
|
4 |
import datetime
|
5 |
import sentencepiece as spm
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# File upload interface
|
8 |
-
uploaded_file = st.file_uploader("
|
9 |
|
10 |
if uploaded_file:
|
11 |
# Load the file into a DataFrame
|
@@ -14,15 +24,70 @@ if uploaded_file:
|
|
14 |
elif uploaded_file.name.endswith('.xlsx'):
|
15 |
df = pd.read_excel(uploaded_file)
|
16 |
|
17 |
-
|
18 |
-
df.
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# Load translation models
|
28 |
pt_en_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-pt-en-t5")
|
@@ -40,59 +105,39 @@ if uploaded_file:
|
|
40 |
return translated_text
|
41 |
|
42 |
def response(user_question, table_data):
|
43 |
-
# Traduz a pergunta para o ingl锚s
|
44 |
question_en = translate(user_question, pt_en_translator, tokenizer, source_lang="pt", target_lang="en")
|
45 |
-
print(question_en)
|
46 |
-
|
47 |
-
# Gera a resposta em ingl锚s
|
48 |
encoding = tapex_tokenizer(table=table_data, query=[question_en], padding=True, return_tensors="pt", truncation=True)
|
49 |
outputs = tapex_model.generate(**encoding)
|
50 |
response_en = tapex_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
51 |
-
print(response_en)
|
52 |
-
|
53 |
-
# Traduz a resposta para o portugu锚s
|
54 |
response_pt = translate(response_en, en_pt_translator, tokenizer, source_lang="en", target_lang="pt")
|
55 |
return response_pt
|
56 |
|
57 |
# Streamlit interface
|
58 |
|
59 |
-
st.
|
60 |
-
<div style='display: flex; align-items: center;'>
|
61 |
-
<div style='width: 20px; height: 20px; background-color: green; border-radius: 50%; margin-right: 2px;'></div>
|
62 |
-
<div style='width: 20px; height: 20px; background-color: red; border-radius: 50%; margin-right: 2px;'></div>
|
63 |
-
<div style='width: 20px; height: 20px; background-color: yellow; border-radius: 50%; margin-right: 10px;'></div>
|
64 |
-
<span style='font-size: 40px; font-weight: bold;'>Chatbot do Tesouro RS</span>
|
65 |
-
</div>
|
66 |
-
""", unsafe_allow_html=True)
|
67 |
|
68 |
# Chat history
|
69 |
if 'history' not in st.session_state:
|
70 |
st.session_state['history'] = []
|
71 |
|
72 |
-
# Input box for user question
|
73 |
user_question = st.text_input("Escreva sua quest茫o aqui:", "")
|
74 |
|
75 |
if user_question:
|
76 |
-
# Add human emoji when user asks a question
|
77 |
st.session_state['history'].append(('馃懁', user_question))
|
78 |
st.markdown(f"**馃懁 {user_question}**")
|
79 |
|
80 |
-
|
81 |
-
bot_response = response(user_question, table_data)
|
82 |
|
83 |
-
# Add robot emoji when generating response and align to the right
|
84 |
st.session_state['history'].append(('馃', bot_response))
|
85 |
st.markdown(f"<div style='text-align: right'>**馃 {bot_response}**</div>", unsafe_allow_html=True)
|
86 |
|
87 |
-
# Clear history button
|
88 |
if st.button("Limpar"):
|
89 |
st.session_state['history'] = []
|
90 |
|
91 |
-
# Display chat history
|
92 |
for sender, message in st.session_state['history']:
|
93 |
if sender == '馃懁':
|
94 |
st.markdown(f"**馃懁 {message}**")
|
95 |
elif sender == '馃':
|
96 |
st.markdown(f"<div style='text-align: right'>**馃 {message}**</div>", unsafe_allow_html=True)
|
97 |
else:
|
98 |
-
st.warning("
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
from transformers import BartForConditionalGeneration, TapexTokenizer, T5ForConditionalGeneration, T5Tokenizer
|
4 |
+
from prophet import Prophet
|
5 |
import datetime
|
6 |
import sentencepiece as spm
|
7 |
|
8 |
+
st.markdown("""
|
9 |
+
<div style='display: flex; align-items: center;'>
|
10 |
+
<div style='width: 20px; height: 20px; background-color: green; border-radius: 50%; margin-right: 2px;'></div>
|
11 |
+
<div style='width: 20px; height: 20px; background-color: red; border-radius: 50%; margin-right: 2px;'></div>
|
12 |
+
<div style='width: 20px; height: 20px; background-color: yellow; border-radius: 50%; margin-right: 10px;'></div>
|
13 |
+
<span style='font-size: 40px; font-weight: bold;'>Chatbot do Tesouro RS</span>
|
14 |
+
</div>
|
15 |
+
""", unsafe_allow_html=True)
|
16 |
+
|
17 |
# File upload interface
|
18 |
+
uploaded_file = st.file_uploader("Upload a CSV or XLSX file", type=['csv', 'xlsx'])
|
19 |
|
20 |
if uploaded_file:
|
21 |
# Load the file into a DataFrame
|
|
|
24 |
elif uploaded_file.name.endswith('.xlsx'):
|
25 |
df = pd.read_excel(uploaded_file)
|
26 |
|
27 |
+
# Data preprocessing for Prophet
|
28 |
+
new_df = df.iloc[2:, 9:-1].fillna(0)
|
29 |
+
new_df.columns = df.iloc[1, 9:-1]
|
30 |
+
new_df.columns = new_df.columns.str.replace(r" \(\d+\)", "", regex=True)
|
31 |
+
|
32 |
+
month_dict = {
|
33 |
+
'Jan': '01', 'Fev': '02', 'Mar': '03', 'Abr': '04',
|
34 |
+
'Mai': '05', 'Jun': '06', 'Jul': '07', 'Ago': '08',
|
35 |
+
'Set': '09', 'Out': '10', 'Nov': '11', 'Dez': '12'
|
36 |
+
}
|
37 |
+
|
38 |
+
def convert_column_name(column_name):
|
39 |
+
if column_name == 'R贸tulos de Linha':
|
40 |
+
return column_name
|
41 |
+
parts = column_name.split('/')
|
42 |
+
month = parts[0].strip()
|
43 |
+
year = parts[1].strip()
|
44 |
+
year = ''.join(filter(str.isdigit, year))
|
45 |
+
month_number = month_dict.get(month, '00')
|
46 |
+
return f"{month_number}/{year}"
|
47 |
+
|
48 |
+
new_df.columns = [convert_column_name(col) for col in new_df.columns]
|
49 |
+
new_df.columns = pd.to_datetime(new_df.columns, errors='coerce')
|
50 |
+
new_df.rename(columns={new_df.columns[0]: 'Rotulo'}, inplace=True)
|
51 |
+
df_clean = new_df.copy()
|
52 |
+
|
53 |
+
# Create an empty DataFrame to store all anomalies
|
54 |
+
all_anomalies = pd.DataFrame()
|
55 |
+
|
56 |
+
# Process each row in the DataFrame
|
57 |
+
for index, row in df_clean.iterrows():
|
58 |
+
data = pd.DataFrame({
|
59 |
+
'ds': [col for col in df_clean.columns if isinstance(col, pd.Timestamp)],
|
60 |
+
'y': row[[isinstance(col, pd.Timestamp) for col in df_clean.columns]].values
|
61 |
+
})
|
62 |
+
|
63 |
+
data = data[data['y'] > 0].reset_index(drop=True)
|
64 |
+
if data.empty or len(data) < 2:
|
65 |
+
print(f"Skipping group {row['Rotulo']} because there are less than 2 non-zero observations.")
|
66 |
+
continue
|
67 |
+
|
68 |
+
try:
|
69 |
+
model = Prophet(interval_width=0.95)
|
70 |
+
model.fit(data)
|
71 |
+
except ValueError as e:
|
72 |
+
print(f"Skipping group {row['Rotulo']} due to error: {e}")
|
73 |
+
continue
|
74 |
+
|
75 |
+
future = model.make_future_dataframe(periods=12, freq='M')
|
76 |
+
forecast = model.predict(future)
|
77 |
+
|
78 |
+
num_real = len(data)
|
79 |
+
num_forecast = len(forecast)
|
80 |
+
real_values = list(data['y']) + [None] * (num_forecast - num_real)
|
81 |
+
forecast['real'] = real_values
|
82 |
+
anomalies = forecast[(forecast['real'] < forecast['yhat_lower']) | (forecast['real'] > forecast['yhat_upper'])]
|
83 |
+
|
84 |
+
anomalies['Group'] = row['Rotulo']
|
85 |
+
all_anomalies = pd.concat([all_anomalies, anomalies[['ds', 'real', 'Group']]], ignore_index=True)
|
86 |
+
|
87 |
+
# Preparing anomalies DataFrame for TAPEX model
|
88 |
+
all_anomalies.rename(columns={"ds": "datetime", "real": "monetary value", "Group": "explanation"}, inplace=True)
|
89 |
+
all_anomalies['monetary value'] = all_anomalies['monetary value'].apply(lambda x: f"{x:.2f}")
|
90 |
+
all_anomalies = all_anomalies.fillna('').astype(str)
|
91 |
|
92 |
# Load translation models
|
93 |
pt_en_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-pt-en-t5")
|
|
|
105 |
return translated_text
|
106 |
|
107 |
def response(user_question, table_data):
|
|
|
108 |
question_en = translate(user_question, pt_en_translator, tokenizer, source_lang="pt", target_lang="en")
|
|
|
|
|
|
|
109 |
encoding = tapex_tokenizer(table=table_data, query=[question_en], padding=True, return_tensors="pt", truncation=True)
|
110 |
outputs = tapex_model.generate(**encoding)
|
111 |
response_en = tapex_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
|
|
|
|
|
|
112 |
response_pt = translate(response_en, en_pt_translator, tokenizer, source_lang="en", target_lang="pt")
|
113 |
return response_pt
|
114 |
|
115 |
# Streamlit interface
|
116 |
|
117 |
+
st.dataframe(all_anomalies.head())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
# Chat history
|
120 |
if 'history' not in st.session_state:
|
121 |
st.session_state['history'] = []
|
122 |
|
|
|
123 |
user_question = st.text_input("Escreva sua quest茫o aqui:", "")
|
124 |
|
125 |
if user_question:
|
|
|
126 |
st.session_state['history'].append(('馃懁', user_question))
|
127 |
st.markdown(f"**馃懁 {user_question}**")
|
128 |
|
129 |
+
bot_response = response(user_question, all_anomalies)
|
|
|
130 |
|
|
|
131 |
st.session_state['history'].append(('馃', bot_response))
|
132 |
st.markdown(f"<div style='text-align: right'>**馃 {bot_response}**</div>", unsafe_allow_html=True)
|
133 |
|
|
|
134 |
if st.button("Limpar"):
|
135 |
st.session_state['history'] = []
|
136 |
|
|
|
137 |
for sender, message in st.session_state['history']:
|
138 |
if sender == '馃懁':
|
139 |
st.markdown(f"**馃懁 {message}**")
|
140 |
elif sender == '馃':
|
141 |
st.markdown(f"<div style='text-align: right'>**馃 {message}**</div>", unsafe_allow_html=True)
|
142 |
else:
|
143 |
+
st.warning("Please upload a CSV or XLSX file to start.")
|