Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import pandas as pd
|
|
3 |
import torch
|
4 |
from transformers import pipeline
|
5 |
from transformers import TapasTokenizer, TapasForQuestionAnswering
|
|
|
6 |
|
7 |
df = pd.read_excel('discrepantes.xlsx', index_col='Unnamed: 0')
|
8 |
df.fillna(0, inplace=True)
|
@@ -10,17 +11,27 @@ table_data = df.astype(str)
|
|
10 |
print(table_data.head())
|
11 |
|
12 |
def response(user_question, table_data):
|
13 |
-
|
14 |
-
model = TapasForQuestionAnswering.from_pretrained("google/tapas-large-finetuned-wtq")
|
15 |
|
16 |
-
|
17 |
-
|
|
|
18 |
|
19 |
-
|
20 |
-
id2aggregation = {0: 'NONE', 1: 'SUM', 2: 'AVERAGE', 3: 'COUNT'}
|
21 |
-
aggregation_predictions = id2aggregation[outputs.aggregation_predictions.detach().cpu().numpy()[0]]
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# Streamlit interface
|
26 |
st.markdown("""
|
|
|
3 |
import torch
|
4 |
from transformers import pipeline
|
5 |
from transformers import TapasTokenizer, TapasForQuestionAnswering
|
6 |
+
import datetime
|
7 |
|
8 |
df = pd.read_excel('discrepantes.xlsx', index_col='Unnamed: 0')
|
9 |
df.fillna(0, inplace=True)
|
|
|
11 |
print(table_data.head())
|
12 |
|
13 |
def response(user_question, table_data):
|
14 |
+
a = datetime.datetime.now()
|
|
|
15 |
|
16 |
+
model_name = "microsoft/tapex-large-finetuned-wtq"
|
17 |
+
model = BartForConditionalGeneration.from_pretrained(model_name)
|
18 |
+
tokenizer = TapexTokenizer.from_pretrained(model_name)
|
19 |
|
20 |
+
queries = [user_question]
|
|
|
|
|
21 |
|
22 |
+
encoding = tokenizer(table=table_data, query=queries, padding=True, return_tensors="pt",truncation=True)
|
23 |
+
outputs = model.generate(**encoding)
|
24 |
+
ans = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
25 |
+
|
26 |
+
query_result = {
|
27 |
+
"query": query,
|
28 |
+
"answer": ans[0]
|
29 |
+
}
|
30 |
+
|
31 |
+
b = datetime.datetime.now()
|
32 |
+
print(b - a)
|
33 |
+
|
34 |
+
return query_result, table
|
35 |
|
36 |
# Streamlit interface
|
37 |
st.markdown("""
|