Spaces:
Sleeping
Sleeping
edmundmiller
commited on
Commit
•
615f84a
1
Parent(s):
89059a8
Add predict_chromosome
Browse fileshttps://github.com/JinLabBioinfo/DeepLoop/blob/af3186196c1a1a7ad3a3f131d3377cb06a304730/prediction/predict_chromosome.py#L100
- __init__.py +1 -0
- predict_chromosome.py +322 -0
__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
predict_chromosome.py
ADDED
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import argparse
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import time
|
7 |
+
from tqdm import tqdm
|
8 |
+
from tensorflow.keras.models import model_from_json
|
9 |
+
from scipy.sparse import csr_matrix, triu
|
10 |
+
|
11 |
+
|
12 |
+
def anchor_list_to_dict(anchors):
|
13 |
+
anchor_dict = {}
|
14 |
+
for i, anchor in enumerate(anchors):
|
15 |
+
anchor_dict[anchor] = i
|
16 |
+
return anchor_dict
|
17 |
+
|
18 |
+
|
19 |
+
def anchor_to_locus(anchor_dict):
|
20 |
+
def f(anchor):
|
21 |
+
return anchor_dict[anchor]
|
22 |
+
|
23 |
+
return f
|
24 |
+
|
25 |
+
|
26 |
+
def locus_to_anchor(anchor_list):
|
27 |
+
def f(locus):
|
28 |
+
return anchor_list[locus]
|
29 |
+
|
30 |
+
return f
|
31 |
+
|
32 |
+
|
33 |
+
def predict_tile(args):
|
34 |
+
model, shared_denoised, shared_overlap, matrix, window_x, window_y = args
|
35 |
+
tile = matrix[window_x, window_y].A # split matrix into tiles
|
36 |
+
if tile.shape == (small_matrix_size, small_matrix_size):
|
37 |
+
tile = np.expand_dims(tile, 0) # add channel dimension
|
38 |
+
tile = np.expand_dims(tile, 3) # add batch dimension
|
39 |
+
tmp_denoised = np.ctypeslib.as_array(shared_denoised)
|
40 |
+
tmp_overlap = np.ctypeslib.as_array(shared_overlap)
|
41 |
+
denoised = model.predict(tile).reshape((small_matrix_size, small_matrix_size))
|
42 |
+
denoised[denoised < 0] = 0 # remove any negative values
|
43 |
+
tmp_denoised[window_x, window_y] += denoised
|
44 |
+
tmp_overlap[window_x, window_y] += 1
|
45 |
+
|
46 |
+
|
47 |
+
def sparse_prediction_from_file(
|
48 |
+
model,
|
49 |
+
matrix,
|
50 |
+
anchor_list,
|
51 |
+
small_matrix_size=128,
|
52 |
+
step_size=64,
|
53 |
+
max_dist=384,
|
54 |
+
keep_zeros=True,
|
55 |
+
):
|
56 |
+
input_matrix_size = len(anchor_list)
|
57 |
+
denoised_matrix = np.zeros_like(matrix.A) # matrix to store denoised values
|
58 |
+
overlap_counts = np.zeros_like(
|
59 |
+
matrix.A
|
60 |
+
) # stores number of overlaps per ratio value
|
61 |
+
|
62 |
+
start_time = time.time()
|
63 |
+
|
64 |
+
for i in range(0, input_matrix_size, step_size):
|
65 |
+
for j in range(0, input_matrix_size, step_size):
|
66 |
+
if abs(i - j) > max_dist: # max distance from diagonal with actual values
|
67 |
+
continue
|
68 |
+
rows = slice(i, i + small_matrix_size)
|
69 |
+
cols = slice(j, j + small_matrix_size)
|
70 |
+
if i + small_matrix_size >= input_matrix_size:
|
71 |
+
rows = slice(input_matrix_size - small_matrix_size, input_matrix_size)
|
72 |
+
if j + small_matrix_size >= input_matrix_size:
|
73 |
+
cols = slice(input_matrix_size - small_matrix_size, input_matrix_size)
|
74 |
+
tile = matrix[rows, cols].A # split matrix into tiles
|
75 |
+
if tile.shape == (small_matrix_size, small_matrix_size):
|
76 |
+
tile = np.expand_dims(tile, 0) # add channel dimension
|
77 |
+
tile = np.expand_dims(tile, 3) # add batch dimension
|
78 |
+
denoised = model.predict(tile).reshape(
|
79 |
+
(small_matrix_size, small_matrix_size)
|
80 |
+
)
|
81 |
+
denoised[denoised < 0] = 0 # remove any negative values
|
82 |
+
denoised_matrix[
|
83 |
+
rows, cols
|
84 |
+
] += denoised # add denoised ratio values to whole matrix
|
85 |
+
overlap_counts[
|
86 |
+
rows, cols
|
87 |
+
] += 1 # add to all overlap values within tiled region
|
88 |
+
|
89 |
+
# print('Predicted matrix in %d seconds' % (time.time() - start_time))
|
90 |
+
# start_time = time.time()
|
91 |
+
denoised_matrix = np.divide(
|
92 |
+
denoised_matrix,
|
93 |
+
overlap_counts,
|
94 |
+
out=np.zeros_like(denoised_matrix),
|
95 |
+
where=overlap_counts != 0,
|
96 |
+
) # average all overlapping areas
|
97 |
+
|
98 |
+
denoised_matrix = (denoised_matrix + denoised_matrix.T) * 0.5 # force symmetry
|
99 |
+
|
100 |
+
np.fill_diagonal(denoised_matrix, 0) # set all diagonal values to 0
|
101 |
+
|
102 |
+
sparse_denoised_matrix = triu(denoised_matrix, format="coo")
|
103 |
+
|
104 |
+
if not keep_zeros:
|
105 |
+
sparse_denoised_matrix.eliminate_zeros()
|
106 |
+
|
107 |
+
# print('Averaging/symmetry, and converting to COO matrix in %d seconds' % (time.time() - start_time))
|
108 |
+
|
109 |
+
return sparse_denoised_matrix
|
110 |
+
|
111 |
+
|
112 |
+
def predict_and_write(
|
113 |
+
model,
|
114 |
+
full_matrix_dir,
|
115 |
+
input_name,
|
116 |
+
out_dir,
|
117 |
+
anchor_dir,
|
118 |
+
chromosome,
|
119 |
+
small_matrix_size,
|
120 |
+
step_size,
|
121 |
+
dummy=5,
|
122 |
+
max_dist=384,
|
123 |
+
val_cols=["obs", "exp"],
|
124 |
+
keep_zeros=True,
|
125 |
+
matrices_per_tile=8,
|
126 |
+
):
|
127 |
+
start_time = time.time()
|
128 |
+
anchor_file = os.path.join(anchor_dir, chromosome + ".bed")
|
129 |
+
anchor_list = pd.read_csv(
|
130 |
+
anchor_file,
|
131 |
+
sep="\t",
|
132 |
+
usecols=[0, 1, 2, 3],
|
133 |
+
names=["chr", "start", "end", "anchor"],
|
134 |
+
) # read anchor list file
|
135 |
+
start_time = time.time()
|
136 |
+
chr_anchor_file = pd.read_csv(
|
137 |
+
os.path.join(full_matrix_dir, input_name),
|
138 |
+
delimiter="\t",
|
139 |
+
names=["anchor1", "anchor2"] + val_cols,
|
140 |
+
usecols=["anchor1", "anchor2"] + val_cols,
|
141 |
+
) # read chromosome anchor to anchor file
|
142 |
+
if "obs" in val_cols and "exp" in val_cols:
|
143 |
+
chr_anchor_file["ratio"] = (chr_anchor_file["obs"] + dummy) / (
|
144 |
+
chr_anchor_file["exp"] + dummy
|
145 |
+
) # compute matrix ratio value
|
146 |
+
assert (
|
147 |
+
"ratio" not in val_cols
|
148 |
+
), "Must provide either ratio column or obs and exp columns to compute ratio"
|
149 |
+
|
150 |
+
denoised_anchor_to_anchor = pd.DataFrame()
|
151 |
+
|
152 |
+
start_time = time.time()
|
153 |
+
|
154 |
+
anchor_step = matrices_per_tile * small_matrix_size
|
155 |
+
|
156 |
+
for i in tqdm(range(0, len(anchor_list), anchor_step)):
|
157 |
+
anchors = anchor_list[i : i + anchor_step]
|
158 |
+
# print(anchors)
|
159 |
+
anchor_dict = anchor_list_to_dict(
|
160 |
+
anchors["anchor"].values
|
161 |
+
) # convert to anchor --> index dictionary
|
162 |
+
chr_tile = chr_anchor_file[
|
163 |
+
(chr_anchor_file["anchor1"].isin(anchors["anchor"]))
|
164 |
+
& (chr_anchor_file["anchor2"].isin(anchors["anchor"]))
|
165 |
+
]
|
166 |
+
rows = np.vectorize(anchor_to_locus(anchor_dict))(
|
167 |
+
chr_tile["anchor1"].values
|
168 |
+
) # convert anchor names to row indices
|
169 |
+
cols = np.vectorize(anchor_to_locus(anchor_dict))(
|
170 |
+
chr_tile["anchor2"].values
|
171 |
+
) # convert anchor names to column indices
|
172 |
+
sparse_matrix = csr_matrix(
|
173 |
+
(chr_tile["ratio"], (rows, cols)), shape=(anchor_step, anchor_step)
|
174 |
+
) # construct sparse CSR matrix
|
175 |
+
|
176 |
+
sparse_denoised_tile = sparse_prediction_from_file(
|
177 |
+
model,
|
178 |
+
sparse_matrix,
|
179 |
+
anchors,
|
180 |
+
small_matrix_size,
|
181 |
+
step_size,
|
182 |
+
max_dist,
|
183 |
+
keep_zeros=keep_zeros,
|
184 |
+
)
|
185 |
+
if len(sparse_denoised_tile.row) > 0:
|
186 |
+
anchor_name_list = anchors["anchor"].values.tolist()
|
187 |
+
|
188 |
+
anchor_1_list = np.vectorize(locus_to_anchor(anchor_name_list))(
|
189 |
+
sparse_denoised_tile.row
|
190 |
+
)
|
191 |
+
anchor_2_list = np.vectorize(locus_to_anchor(anchor_name_list))(
|
192 |
+
sparse_denoised_tile.col
|
193 |
+
)
|
194 |
+
|
195 |
+
anchor_to_anchor_dict = {
|
196 |
+
"anchor1": anchor_1_list,
|
197 |
+
"anchor2": anchor_2_list,
|
198 |
+
"denoised": sparse_denoised_tile.data,
|
199 |
+
}
|
200 |
+
|
201 |
+
tile_anchor_to_anchor = pd.DataFrame.from_dict(anchor_to_anchor_dict)
|
202 |
+
tile_anchor_to_anchor = tile_anchor_to_anchor.round({"denoised": 4})
|
203 |
+
denoised_anchor_to_anchor = pd.concat(
|
204 |
+
[denoised_anchor_to_anchor, tile_anchor_to_anchor]
|
205 |
+
)
|
206 |
+
|
207 |
+
print("Denoised matrix in %d seconds" % (time.time() - start_time))
|
208 |
+
start_time = time.time()
|
209 |
+
|
210 |
+
denoised_anchor_to_anchor.to_csv(
|
211 |
+
os.path.join(out_dir, chromosome + ".denoised.anchor.to.anchor"),
|
212 |
+
sep="\t",
|
213 |
+
index=False,
|
214 |
+
header=False,
|
215 |
+
)
|
216 |
+
|
217 |
+
|
218 |
+
if __name__ == "__main__":
|
219 |
+
parser = argparse.ArgumentParser()
|
220 |
+
parser.add_argument(
|
221 |
+
"--full_matrix_dir",
|
222 |
+
type=str,
|
223 |
+
help="directory containing chromosome interaction files to be used as input",
|
224 |
+
)
|
225 |
+
parser.add_argument(
|
226 |
+
"--input_name",
|
227 |
+
type=str,
|
228 |
+
help="name of file in full_matrix_dir that we want to feed into model",
|
229 |
+
)
|
230 |
+
parser.add_argument("--h5_file", type=str, help="path to model weights .h5 file")
|
231 |
+
parser.add_argument(
|
232 |
+
"--json_file",
|
233 |
+
type=str,
|
234 |
+
help="path to model architecture .json file (by default it is assumed to be the same as the weights file)",
|
235 |
+
)
|
236 |
+
parser.add_argument(
|
237 |
+
"--out_dir",
|
238 |
+
type=str,
|
239 |
+
help="directory where the output interaction file will be stored",
|
240 |
+
)
|
241 |
+
parser.add_argument(
|
242 |
+
"--anchor_dir",
|
243 |
+
type=str,
|
244 |
+
help="directory containing anchor .bed reference files",
|
245 |
+
)
|
246 |
+
parser.add_argument(
|
247 |
+
"--chromosome", type=str, help="chromosome string (e.g chr1, chr20, chrX)"
|
248 |
+
)
|
249 |
+
parser.add_argument(
|
250 |
+
"--small_matrix_size",
|
251 |
+
type=int,
|
252 |
+
default=128,
|
253 |
+
help="size of input tiles (symmetric)",
|
254 |
+
)
|
255 |
+
parser.add_argument(
|
256 |
+
"--step_size",
|
257 |
+
type=int,
|
258 |
+
default=128,
|
259 |
+
help="step size when tiling matrix (overlapping values will be averaged if different)",
|
260 |
+
)
|
261 |
+
parser.add_argument(
|
262 |
+
"--max_dist",
|
263 |
+
type=int,
|
264 |
+
default=384,
|
265 |
+
help="maximum distance from diagonal (in pixels) where we consider interactions (default to ~2Mb)",
|
266 |
+
)
|
267 |
+
parser.add_argument(
|
268 |
+
"--dummy",
|
269 |
+
type=int,
|
270 |
+
default=5,
|
271 |
+
help="dummy value to compute ratio (obs + dummy) / (exp + dummy)",
|
272 |
+
)
|
273 |
+
parser.add_argument(
|
274 |
+
"--val_cols",
|
275 |
+
"--list",
|
276 |
+
nargs="+",
|
277 |
+
help="names of value columns in interaction files (not including a1, a2)",
|
278 |
+
default=["obs", "exp"],
|
279 |
+
)
|
280 |
+
parser.add_argument(
|
281 |
+
"--keep_zeros",
|
282 |
+
action="store_true",
|
283 |
+
help="if provided, the output file will contain all pixels in every tile, even if no value is present",
|
284 |
+
)
|
285 |
+
args = parser.parse_args()
|
286 |
+
|
287 |
+
full_matrix_dir = args.full_matrix_dir
|
288 |
+
input_name = args.input_name
|
289 |
+
h5_file = args.h5_file
|
290 |
+
if args.json_file is not None:
|
291 |
+
json_file = args.json_file
|
292 |
+
else:
|
293 |
+
json_file = args.h5_file.replace("h5", "json")
|
294 |
+
out_dir = args.out_dir
|
295 |
+
anchor_dir = args.anchor_dir
|
296 |
+
chromosome = args.chromosome
|
297 |
+
small_matrix_size = args.small_matrix_size
|
298 |
+
step_size = args.step_size
|
299 |
+
dummy = args.dummy
|
300 |
+
max_dist = args.max_dist
|
301 |
+
val_cols = args.val_cols
|
302 |
+
keep_zeros = args.keep_zeros
|
303 |
+
|
304 |
+
os.makedirs(out_dir, exist_ok=True)
|
305 |
+
|
306 |
+
with open(json_file, "r") as f:
|
307 |
+
model = model_from_json(f.read()) # load model
|
308 |
+
model.load_weights(h5_file) # load model weights
|
309 |
+
predict_and_write(
|
310 |
+
model,
|
311 |
+
full_matrix_dir,
|
312 |
+
input_name,
|
313 |
+
out_dir,
|
314 |
+
anchor_dir,
|
315 |
+
chromosome,
|
316 |
+
small_matrix_size,
|
317 |
+
step_size,
|
318 |
+
dummy,
|
319 |
+
max_dist,
|
320 |
+
val_cols,
|
321 |
+
keep_zeros,
|
322 |
+
)
|