Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import json | |
import requests | |
#Streaming endpoint | |
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream" | |
OPENAI_API_KEY= os.environ["HF_TOKEN"] # Add a token to this space . Then copy it to the repository secret in this spaces settings panel. os.environ reads from there. | |
# Keys for Open AI ChatGPT API usage are created from here: https://platform.openai.com/account/api-keys | |
def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]): #repetition_penalty, top_k | |
# 1. Set up a payload | |
payload = { | |
"model": "gpt-3.5-turbo", | |
"messages": [{"role": "user", "content": f"{inputs}"}], | |
"temperature" : 1.0, | |
"top_p":1.0, | |
"n" : 1, | |
"stream": True, | |
"presence_penalty":0, | |
"frequency_penalty":0, | |
} | |
# 2. Define your headers and add a key from https://platform.openai.com/account/api-keys | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {OPENAI_API_KEY}" | |
} | |
# 3. Create a chat counter loop that feeds [Predict next best anything based on last input and attention with memory defined by introspective attention over time] | |
print(f"chat_counter - {chat_counter}") | |
if chat_counter != 0 : | |
messages=[] | |
for data in chatbot: | |
temp1 = {} | |
temp1["role"] = "user" | |
temp1["content"] = data[0] | |
temp2 = {} | |
temp2["role"] = "assistant" | |
temp2["content"] = data[1] | |
messages.append(temp1) | |
messages.append(temp2) | |
temp3 = {} | |
temp3["role"] = "user" | |
temp3["content"] = inputs | |
messages.append(temp3) | |
payload = { | |
"model": "gpt-3.5-turbo", | |
"messages": messages, #[{"role": "user", "content": f"{inputs}"}], | |
"temperature" : temperature, #1.0, | |
"top_p": top_p, #1.0, | |
"n" : 1, | |
"stream": True, | |
"presence_penalty":0, | |
"frequency_penalty":0, | |
} | |
chat_counter+=1 | |
# 4. POST it to OPENAI API | |
history.append(inputs) | |
print(f"payload is - {payload}") | |
response = requests.post(API_URL, headers=headers, json=payload, stream=True) | |
token_counter = 0 | |
partial_words = "" | |
# 5. Iterate through response lines and structure readable response | |
counter=0 | |
for chunk in response.iter_lines(): | |
if counter == 0: | |
counter+=1 | |
continue | |
if chunk.decode() : | |
chunk = chunk.decode() | |
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']: | |
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"] | |
if token_counter == 0: | |
history.append(" " + partial_words) | |
else: | |
history[-1] = partial_words | |
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list | |
token_counter+=1 | |
yield chat, history, chat_counter | |
def reset_textbox(): | |
return gr.update(value='') | |
# Episodic and Semantic IO | |
def list_files(file_path): | |
import os | |
icon_csv = "📄 " | |
icon_txt = "📑 " | |
current_directory = os.getcwd() | |
file_list = [] | |
for filename in os.listdir(current_directory): | |
if filename.endswith(".csv"): | |
file_list.append(icon_csv + filename) | |
elif filename.endswith(".txt"): | |
file_list.append(icon_txt + filename) | |
if file_list: | |
return "\n".join(file_list) | |
else: | |
return "No .csv or .txt files found in the current directory." | |
# Function to read a file | |
def read_file(file_path): | |
try: | |
with open(file_path, "r") as file: | |
contents = file.read() | |
return f"{contents}" | |
#return f"Contents of {file_path}:\n{contents}" | |
except FileNotFoundError: | |
return "File not found." | |
# Function to delete a file | |
def delete_file(file_path): | |
try: | |
import os | |
os.remove(file_path) | |
return f"{file_path} has been deleted." | |
except FileNotFoundError: | |
return "File not found." | |
# Function to write to a file | |
def write_file(file_path, content): | |
try: | |
with open(file_path, "w") as file: | |
file.write(content) | |
return f"Successfully written to {file_path}." | |
except: | |
return "Error occurred while writing to file." | |
# Function to append to a file | |
def append_file(file_path, content): | |
try: | |
with open(file_path, "a") as file: | |
file.write(content) | |
return f"Successfully appended to {file_path}." | |
except: | |
return "Error occurred while appending to file." | |
title = """<h1 align="center">Memory Chat Story Generator ChatGPT</h1>""" | |
description = """ | |
## ChatGPT Datasets 📚 | |
- WebText | |
- Common Crawl | |
- BooksCorpus | |
- English Wikipedia | |
- Toronto Books Corpus | |
- OpenWebText | |
## ChatGPT Datasets - Details 📚 | |
- **WebText:** A dataset of web pages crawled from domains on the Alexa top 5,000 list. This dataset was used to pretrain GPT-2. | |
- [WebText: A Large-Scale Unsupervised Text Corpus by Radford et al.](https://paperswithcode.com/dataset/webtext) | |
- **Common Crawl:** A dataset of web pages from a variety of domains, which is updated regularly. This dataset was used to pretrain GPT-3. | |
- [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/common-crawl) by Brown et al. | |
- **BooksCorpus:** A dataset of over 11,000 books from a variety of genres. | |
- [Scalable Methods for 8 Billion Token Language Modeling](https://paperswithcode.com/dataset/bookcorpus) by Zhu et al. | |
- **English Wikipedia:** A dump of the English-language Wikipedia as of 2018, with articles from 2001-2017. | |
- [Improving Language Understanding by Generative Pre-Training](https://huggingface.co/spaces/awacke1/WikipediaUltimateAISearch?logs=build) Space for Wikipedia Search | |
- **Toronto Books Corpus:** A dataset of over 7,000 books from a variety of genres, collected by the University of Toronto. | |
- [Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond](https://paperswithcode.com/dataset/bookcorpus) by Schwenk and Douze. | |
- **OpenWebText:** A dataset of web pages that were filtered to remove content that was likely to be low-quality or spammy. This dataset was used to pretrain GPT-3. | |
- [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/openwebtext) by Brown et al. | |
""" | |
# 6. Use Gradio to pull it all together | |
with gr.Blocks(css = """#col_container {width: 1400px; margin-left: auto; margin-right: auto;} #chatbot {height: 600px; overflow: auto;}""") as demo: | |
gr.HTML(title) | |
with gr.Column(elem_id = "col_container"): | |
inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") | |
chatbot = gr.Chatbot(elem_id='chatbot') | |
state = gr.State([]) | |
b1 = gr.Button() | |
with gr.Accordion("Parameters", open=False): | |
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",) | |
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",) | |
chat_counter = gr.Number(value=0, visible=True, precision=0) | |
# Episodic/Semantic IO | |
fileName = gr.Textbox(label="Filename") | |
fileContent = gr.TextArea(label="File Content") | |
completedMessage = gr.Textbox(label="Completed") | |
label = gr.Label() | |
with gr.Row(): | |
listFiles = gr.Button("📄 List File(s)") | |
readFile = gr.Button("📖 Read File") | |
saveFile = gr.Button("💾 Save File") | |
deleteFile = gr.Button("🗑️ Delete File") | |
appendFile = gr.Button("➕ Append File") | |
listFiles.click(list_files, inputs=fileName, outputs=fileContent) | |
readFile.click(read_file, inputs=fileName, outputs=fileContent) | |
saveFile.click(write_file, inputs=[fileName, fileContent], outputs=completedMessage) | |
deleteFile.click(delete_file, inputs=fileName, outputs=completedMessage) | |
appendFile.click(append_file, inputs=[fileName, fileContent], outputs=completedMessage ) | |
inputs.submit(predict, [inputs, top_p, temperature,chat_counter, chatbot, state], [chatbot, state, chat_counter]) | |
b1.click(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter]) | |
b1.click(reset_textbox, [], [inputs]) | |
inputs.submit(reset_textbox, [], [inputs]) | |
gr.Markdown(description) | |
demo.queue().launch(debug=True) |