Spaces:
Runtime error
Runtime error
import streamlit as st | |
import torch | |
from transformers import BertTokenizer, BertModel | |
from huggingface_hub import hf_hub_url, cached_download | |
def get_cls_layer(repo_id="furrutiav/beto_coherence"): | |
config_file_url = hf_hub_url(repo_id, filename="cls_layer.torch") | |
value = cached_download(config_file_url) | |
return torch.load(value, map_location=torch.device('cpu')) | |
cls_layer = get_cls_layer() | |
beto_model = BertModel.from_pretrained("furrutiav/beto_coherence", revision="df96f50cfb1e3f7923912a25b1c3a865116fae4a") | |
beto_tokenizer = BertTokenizer.from_pretrained("furrutiav/beto_coherence", revision="df96f50cfb1e3f7923912a25b1c3a865116fae4a", do_lower_case=False) | |
e = beto_model.eval() | |
def preproccesing(Q, A, maxlen=60): | |
Q = " ".join(str(Q).replace("\n", " ").split()) | |
A = " ".join(str(A).replace("\n", " ").split()) | |
Q = Q if Q != "" else "nan" | |
A = A if A != "" else "nan" | |
tokens1 = beto_tokenizer.tokenize(Q) | |
tokens1 = ['[CLS]'] + tokens1 + ['[SEP]'] | |
if len(tokens1) < maxlen: | |
tokens1 = tokens1 + ['[PAD]' for _ in range(maxlen - len(tokens1))] | |
else: | |
tokens1 = tokens1[:maxlen-1] + ['[SEP]'] | |
tokens2 = beto_tokenizer.tokenize(A) | |
tokens2 = tokens2 + ['[SEP]'] | |
if len(tokens2) < maxlen: | |
tokens2 = tokens2 + ['[PAD]' for _ in range(maxlen - len(tokens2))] | |
else: | |
tokens2 = tokens2[:maxlen-1] + ['[SEP]'] | |
tokens = tokens1+tokens2 | |
tokens_ids = beto_tokenizer.convert_tokens_to_ids(tokens) | |
tokens_ids_tensor = torch.tensor(tokens_ids) | |
attn_mask = (tokens_ids_tensor != 1).long() | |
return tokens_ids_tensor, attn_mask | |
def C1Classifier(Q, A, is_probs=True): | |
tokens_ids_tensor, attn_mask = preproccesing(Q, A) | |
cont_reps = beto_model(tokens_ids_tensor.unsqueeze(0), attention_mask = attn_mask.unsqueeze(0)) | |
cls_rep = cont_reps.last_hidden_state[:, 0] | |
logits = cls_layer(cls_rep) | |
probs = torch.sigmoid(logits) | |
soft_probs = probs.argmax(1) | |
if is_probs: | |
return probs.detach().numpy()[0] | |
else: | |
return soft_probs.numpy()[0] | |