Spaces:
Running
Running
import gradio as gr | |
from backend import get_message_single, get_message_spam, send_single, send_spam | |
from defaults import ( | |
ADDRESS_BETTERTRANSFORMER, | |
ADDRESS_VANILLA, | |
defaults_bt_single, | |
defaults_bt_spam, | |
defaults_vanilla_single, | |
defaults_vanilla_spam, | |
) | |
TTILE_IMAGE = """ | |
<div | |
style=" | |
display: block; | |
margin-left: auto; | |
margin-right: auto; | |
width: 50%; | |
" | |
> | |
<img src="https://huggingface.co/spaces/fxmarty/bettertransformer-demo/resolve/main/header.webp"/> | |
</div> | |
""" | |
TITLE = """ | |
<div | |
style=" | |
display: inline-flex; | |
align-items: center; | |
text-align: center; | |
max-width: 1400px; | |
gap: 0.8rem; | |
font-size: 2.2rem; | |
" | |
> | |
<h1 style="font-weight: 700; margin-bottom: 10px; margin-top: 10px;"> | |
Speed up your inference and support more workload with PyTorch's BetterTransformer 🤗 | |
</h1> | |
</div> | |
""" | |
with gr.Blocks() as demo: | |
gr.HTML(TTILE_IMAGE) | |
gr.HTML(TITLE) | |
gr.Markdown( | |
""" | |
Let's try out TorchServe + BetterTransformer! | |
BetterTransformer is a stable feature made available with [PyTorch 1.13](https://pytorch.org/blog/PyTorch-1.13-release/) allowing to use a fastpath execution for encoder attention blocks. | |
As a one-liner, you can convert your 🤗 Transformers models to use BetterTransformer thanks to the [🤗 Optimum](https://huggingface.co/docs/optimum/main/en/index) library: | |
``` | |
from optimum.bettertransformer import BetterTransformer | |
better_model = BetterTransformer.transform(model) | |
``` | |
This Space is a demo of an **end-to-end** deployement of PyTorch eager-mode models, both with and without BetterTransformer. The goal is to see what are the benefits server-side and client-side of using BetterTransformer. | |
## Inference using... | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=50): | |
gr.Markdown("### Vanilla Transformers + TorchServe") | |
address_input_vanilla = gr.Textbox( | |
max_lines=1, label="ip vanilla", value=ADDRESS_VANILLA, visible=False | |
) | |
input_model_vanilla = gr.Textbox( | |
max_lines=1, | |
label="Text", | |
value="Expectations were low, enjoyment was high", | |
) | |
btn_single_vanilla = gr.Button("Send single text request") | |
output_single_vanilla = gr.Markdown( | |
label="Output single vanilla", | |
value=get_message_single(**defaults_vanilla_single), | |
) | |
btn_spam_vanilla = gr.Button( | |
"Spam text requests (from sst2 validation set)" | |
) | |
output_spam_vanilla = gr.Markdown( | |
label="Output spam vanilla", | |
value=get_message_spam(**defaults_vanilla_spam), | |
) | |
btn_single_vanilla.click( | |
fn=send_single, | |
inputs=[input_model_vanilla, address_input_vanilla], | |
outputs=output_single_vanilla, | |
) | |
btn_spam_vanilla.click( | |
fn=send_spam, | |
inputs=[address_input_vanilla], | |
outputs=output_spam_vanilla, | |
) | |
with gr.Column(scale=50): | |
gr.Markdown("### BetterTransformer + TorchServe") | |
address_input_bettertransformer = gr.Textbox( | |
max_lines=1, | |
label="ip bettertransformer", | |
value=ADDRESS_BETTERTRANSFORMER, | |
visible=False, | |
) | |
input_model_bettertransformer = gr.Textbox( | |
max_lines=1, | |
label="Text", | |
value="Expectations were low, enjoyment was high", | |
) | |
btn_single_bt = gr.Button("Send single text request") | |
output_single_bt = gr.Markdown( | |
label="Output single bt", value=get_message_single(**defaults_bt_single) | |
) | |
btn_spam_bt = gr.Button("Spam text requests (from sst2 validation set)") | |
output_spam_bt = gr.Markdown( | |
label="Output spam bt", value=get_message_spam(**defaults_bt_spam) | |
) | |
btn_single_bt.click( | |
fn=send_single, | |
inputs=[input_model_bettertransformer, address_input_bettertransformer], | |
outputs=output_single_bt, | |
) | |
btn_spam_bt.click( | |
fn=send_spam, | |
inputs=[address_input_bettertransformer], | |
outputs=output_spam_bt, | |
) | |
demo.queue(concurrency_count=1) | |
demo.launch() | |