Spaces:
Running
Running
Felix Marty
commited on
Commit
•
bf38ec8
1
Parent(s):
d10c2a9
update
Browse files- app.py +111 -79
- backend.py +28 -24
- defaults.py +5 -3
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
|
|
|
|
4 |
from defaults import (
|
5 |
ADDRESS_BETTERTRANSFORMER,
|
6 |
ADDRESS_VANILLA,
|
@@ -8,8 +10,60 @@ from defaults import (
|
|
8 |
defaults_bt_spam,
|
9 |
defaults_vanilla_single,
|
10 |
defaults_vanilla_spam,
|
|
|
11 |
)
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
TTILE_IMAGE = """
|
14 |
<div
|
15 |
style="
|
@@ -34,7 +88,7 @@ TITLE = """
|
|
34 |
font-size: 2.2rem;
|
35 |
"
|
36 |
>
|
37 |
-
<h1 style="font-weight:
|
38 |
Speed up your inference and support more workload with PyTorch's BetterTransformer 🤗
|
39 |
</h1>
|
40 |
</div>
|
@@ -67,98 +121,76 @@ with gr.Blocks() as demo:
|
|
67 |
with gr.Row():
|
68 |
with gr.Column(scale=50):
|
69 |
gr.Markdown("### Vanilla Transformers + TorchServe")
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
|
81 |
-
|
|
|
|
|
82 |
output_single_vanilla = gr.Markdown(
|
83 |
label="Output single vanilla",
|
84 |
value=get_message_single(**defaults_vanilla_single),
|
85 |
)
|
86 |
-
with gr.Column():
|
87 |
-
with gr.Column(scale=40):
|
88 |
-
input_n_inputs_vanilla = gr.Textbox(
|
89 |
-
max_lines=1,
|
90 |
-
label="Number of inputs",
|
91 |
-
value=8,
|
92 |
-
)
|
93 |
-
with gr.Column(scale=60):
|
94 |
-
gr.Markdown("")
|
95 |
-
btn_spam_vanilla = gr.Button(
|
96 |
-
"Spam text requests (from sst2 validation set)"
|
97 |
-
)
|
98 |
-
|
99 |
-
output_spam_vanilla = gr.Markdown(
|
100 |
-
label="Output spam vanilla",
|
101 |
-
value=get_message_spam(**defaults_vanilla_spam),
|
102 |
-
)
|
103 |
-
|
104 |
-
btn_single_vanilla.click(
|
105 |
-
fn=send_single,
|
106 |
-
inputs=[input_model_vanilla, address_input_vanilla],
|
107 |
-
outputs=output_single_vanilla,
|
108 |
-
)
|
109 |
-
btn_spam_vanilla.click(
|
110 |
-
fn=send_spam,
|
111 |
-
inputs=[address_input_vanilla],
|
112 |
-
outputs=output_spam_vanilla,
|
113 |
-
)
|
114 |
-
|
115 |
with gr.Column(scale=50):
|
116 |
-
gr.Markdown("### BetterTransformer + TorchServe")
|
117 |
-
|
118 |
-
address_input_bettertransformer = gr.Textbox(
|
119 |
-
max_lines=1,
|
120 |
-
label="ip bettertransformer",
|
121 |
-
value=ADDRESS_BETTERTRANSFORMER,
|
122 |
-
visible=False,
|
123 |
-
)
|
124 |
-
|
125 |
-
input_model_bettertransformer = gr.Textbox(
|
126 |
-
max_lines=1,
|
127 |
-
label="Text",
|
128 |
-
value="Expectations were low, enjoyment was high",
|
129 |
-
)
|
130 |
-
|
131 |
-
btn_single_bt = gr.Button("Send single text request")
|
132 |
output_single_bt = gr.Markdown(
|
133 |
label="Output single bt", value=get_message_single(**defaults_bt_single)
|
134 |
)
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
label="Output spam bt", value=get_message_spam(**defaults_bt_spam)
|
149 |
)
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
|
157 |
-
btn_spam_bt.click(
|
158 |
-
fn=send_spam,
|
159 |
-
inputs=[address_input_bettertransformer],
|
160 |
-
outputs=output_spam_bt,
|
161 |
-
)
|
162 |
|
163 |
demo.queue(concurrency_count=1)
|
164 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
import json
|
4 |
+
import math
|
5 |
+
from backend import get_message_single, get_message_spam, send_single, send_spam, tokenizer
|
6 |
from defaults import (
|
7 |
ADDRESS_BETTERTRANSFORMER,
|
8 |
ADDRESS_VANILLA,
|
|
|
10 |
defaults_bt_spam,
|
11 |
defaults_vanilla_single,
|
12 |
defaults_vanilla_spam,
|
13 |
+
BATCH_SIZE,
|
14 |
)
|
15 |
|
16 |
+
import datasets
|
17 |
+
import torch
|
18 |
+
|
19 |
+
def dispatch_single(input_model_single, address_input_vanilla, address_input_bettertransformer):
|
20 |
+
result_vanilla = send_single(input_model_single, address_input_vanilla)
|
21 |
+
result_bettertransformer = send_single(input_model_single, address_input_bettertransformer)
|
22 |
+
|
23 |
+
return result_vanilla, result_bettertransformer
|
24 |
+
|
25 |
+
def dispatch_spam(input_n_spam, address_input_vanilla, address_input_bettertransformer):
|
26 |
+
input_n_spam = int(input_n_spam)
|
27 |
+
assert input_n_spam <= len(data)
|
28 |
+
|
29 |
+
inp = data.shuffle().select(range(input_n_spam))
|
30 |
+
|
31 |
+
result_vanilla = send_spam(inp, address_input_vanilla)
|
32 |
+
result_bettertransformer = send_spam(inp, address_input_bettertransformer)
|
33 |
+
|
34 |
+
return result_vanilla, result_bettertransformer
|
35 |
+
|
36 |
+
def dispatch_spam_artif(input_n_spam_artif, sequence_length, padding_ratio, address_input_vanilla, address_input_bettertransformer):
|
37 |
+
sequence_length = int(sequence_length)
|
38 |
+
input_n_spam_artif = int(input_n_spam_artif)
|
39 |
+
|
40 |
+
inp_tokens = torch.randint(tokenizer.vocab_size - 1, (sequence_length,)) + 1
|
41 |
+
|
42 |
+
n_pads = max(int(padding_ratio * len(inp_tokens)), 1)
|
43 |
+
inp_tokens[- n_pads:] = 0
|
44 |
+
|
45 |
+
inp_tokens[0] = 101
|
46 |
+
inp_tokens[- n_pads - 1] = 102
|
47 |
+
#inp_tokens = inp_tokens.unsqueeze(0).repeat(BATCH_SIZE, 1)
|
48 |
+
|
49 |
+
attention_mask = torch.zeros((sequence_length,), dtype=torch.int64)
|
50 |
+
attention_mask[:- n_pads] = 1
|
51 |
+
|
52 |
+
str_input = json.dumps({
|
53 |
+
"input_ids": inp_tokens.cpu().tolist(),
|
54 |
+
"attention_mask": attention_mask.cpu().tolist(),
|
55 |
+
"pre_tokenized": True,
|
56 |
+
})
|
57 |
+
|
58 |
+
input_dataset = datasets.Dataset.from_dict(
|
59 |
+
{"sentence": [str_input for _ in range(input_n_spam_artif)]}
|
60 |
+
)
|
61 |
+
|
62 |
+
result_vanilla = send_spam(input_dataset, address_input_vanilla)
|
63 |
+
result_bettertransformer = send_spam(input_dataset, address_input_bettertransformer)
|
64 |
+
|
65 |
+
return result_vanilla, result_bettertransformer
|
66 |
+
|
67 |
TTILE_IMAGE = """
|
68 |
<div
|
69 |
style="
|
|
|
88 |
font-size: 2.2rem;
|
89 |
"
|
90 |
>
|
91 |
+
<h1 style="font-weight: 500; margin-bottom: 10px; margin-top: 10px;">
|
92 |
Speed up your inference and support more workload with PyTorch's BetterTransformer 🤗
|
93 |
</h1>
|
94 |
</div>
|
|
|
121 |
with gr.Row():
|
122 |
with gr.Column(scale=50):
|
123 |
gr.Markdown("### Vanilla Transformers + TorchServe")
|
124 |
+
with gr.Column(scale=50):
|
125 |
+
gr.Markdown("### BetterTransformer + TorchServe")
|
126 |
+
|
127 |
+
address_input_vanilla = gr.Textbox(
|
128 |
+
max_lines=1, label="ip vanilla", value=ADDRESS_VANILLA, visible=False
|
129 |
+
)
|
130 |
|
131 |
+
address_input_bettertransformer = gr.Textbox(
|
132 |
+
max_lines=1,
|
133 |
+
label="ip bettertransformer",
|
134 |
+
value=ADDRESS_BETTERTRANSFORMER,
|
135 |
+
visible=False,
|
136 |
+
)
|
137 |
|
138 |
+
input_model_single = gr.Textbox(
|
139 |
+
max_lines=1,
|
140 |
+
label="Text",
|
141 |
+
value="Expectations were low, enjoyment was high",
|
142 |
+
)
|
143 |
|
144 |
+
btn_single = gr.Button("Send single text request")
|
145 |
+
with gr.Row():
|
146 |
+
with gr.Column(scale=50):
|
147 |
output_single_vanilla = gr.Markdown(
|
148 |
label="Output single vanilla",
|
149 |
value=get_message_single(**defaults_vanilla_single),
|
150 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
with gr.Column(scale=50):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
output_single_bt = gr.Markdown(
|
153 |
label="Output single bt", value=get_message_single(**defaults_bt_single)
|
154 |
)
|
155 |
|
156 |
+
btn_single.click(
|
157 |
+
fn=dispatch_single,
|
158 |
+
inputs=[input_model_single, address_input_vanilla, address_input_bettertransformer],
|
159 |
+
outputs=[output_single_vanilla, output_single_bt],
|
160 |
+
)
|
161 |
+
|
162 |
+
input_n_spam_artif = gr.Number(
|
163 |
+
label="Number of inputs to send",
|
164 |
+
value=8,
|
165 |
+
)
|
166 |
+
sequence_length = gr.Number(
|
167 |
+
label="Sequence length (in tokens)",
|
168 |
+
value=128,
|
169 |
+
)
|
170 |
+
padding_ratio = gr.Number(
|
171 |
+
label="Padding ratio",
|
172 |
+
value=0.5,
|
173 |
+
)
|
174 |
+
btn_spam_artif = gr.Button(
|
175 |
+
"Spam text requests (using artificial data)"
|
176 |
+
)
|
177 |
+
with gr.Row():
|
178 |
+
with gr.Column(scale=50):
|
179 |
+
output_spam_vanilla_artif = gr.Markdown(
|
180 |
+
label="Output spam vanilla",
|
181 |
+
value=get_message_spam(**defaults_vanilla_spam),
|
182 |
+
)
|
183 |
+
with gr.Column(scale=50):
|
184 |
+
output_spam_bt_artif = gr.Markdown(
|
185 |
label="Output spam bt", value=get_message_spam(**defaults_bt_spam)
|
186 |
)
|
187 |
|
188 |
+
btn_spam_artif.click(
|
189 |
+
fn=dispatch_spam_artif,
|
190 |
+
inputs=[input_n_spam_artif, sequence_length, padding_ratio, address_input_vanilla, address_input_bettertransformer],
|
191 |
+
outputs=[output_spam_vanilla_artif, output_spam_bt_artif],
|
192 |
+
)
|
193 |
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
demo.queue(concurrency_count=1)
|
196 |
+
demo.launch()
|
backend.py
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
import json
|
2 |
|
3 |
-
from datasets import load_dataset
|
4 |
-
|
5 |
from defaults import (
|
6 |
ADDRESS_BETTERTRANSFORMER,
|
7 |
ADDRESS_VANILLA,
|
8 |
HEADERS,
|
9 |
-
|
10 |
)
|
11 |
from utils import ElapsedFuturesSession
|
12 |
|
13 |
-
|
|
|
|
|
14 |
|
15 |
RETURN_MESSAGE_SINGLE = """
|
16 |
Inference statistics:
|
@@ -26,19 +26,20 @@ Inference statistics:
|
|
26 |
RETURN_MESSAGE_SPAM = (
|
27 |
"""
|
28 |
Processing """
|
29 |
-
+
|
30 |
-
+ """ inputs sent asynchronously. Grab a coffee.
|
31 |
|
32 |
Inference statistics:
|
33 |
|
34 |
-
*
|
35 |
* Mean inference latency (preprocessing/forward/postprocessing): {1} ms
|
36 |
* Mean peak GPU memory: {2} MB
|
37 |
* Mean padding ratio: {3} %
|
38 |
* Mean sequence length: {4} tokens
|
|
|
39 |
"""
|
40 |
)
|
41 |
|
|
|
42 |
|
43 |
def get_message_single(
|
44 |
status, prediction, inf_latency, peak_gpu_memory, end_to_end_latency, **kwargs
|
@@ -49,25 +50,26 @@ def get_message_single(
|
|
49 |
|
50 |
|
51 |
def get_message_spam(
|
52 |
-
|
53 |
mean_inference_latency,
|
54 |
mean_peak_gpu_memory,
|
55 |
mean_padding_ratio,
|
56 |
mean_sequence_length,
|
|
|
57 |
**kwargs,
|
58 |
):
|
59 |
return RETURN_MESSAGE_SPAM.format(
|
60 |
-
|
61 |
mean_inference_latency,
|
62 |
mean_peak_gpu_memory,
|
63 |
mean_padding_ratio,
|
64 |
mean_sequence_length,
|
|
|
65 |
)
|
66 |
|
67 |
|
68 |
SESSION = ElapsedFuturesSession()
|
69 |
|
70 |
-
|
71 |
def send_single(input_model_vanilla, address: str):
|
72 |
assert address in [ADDRESS_VANILLA, ADDRESS_BETTERTRANSFORMER]
|
73 |
|
@@ -94,26 +96,24 @@ def send_single(input_model_vanilla, address: str):
|
|
94 |
)
|
95 |
|
96 |
|
97 |
-
def send_spam(address: str):
|
98 |
assert address in [ADDRESS_VANILLA, ADDRESS_BETTERTRANSFORMER]
|
99 |
|
100 |
# data = "this is positive lol" #TODO: use dynamic data with padding
|
101 |
-
|
102 |
-
assert SPAM_N_REQUESTS <= len(data)
|
103 |
-
|
104 |
-
inp = data.shuffle().select(range(SPAM_N_REQUESTS))
|
105 |
-
|
106 |
-
resolution_time = 0
|
107 |
mean_inference_latency = 0
|
108 |
mean_peak_gpu_memory = 0
|
109 |
|
110 |
n_pads = 0
|
111 |
n_elems = 0
|
112 |
sequence_length = 0
|
|
|
113 |
|
114 |
promises = []
|
115 |
|
116 |
-
|
|
|
|
|
117 |
input_data = inp[i]["sentence"].encode("utf-8")
|
118 |
|
119 |
# should not take more than 15 s, so timeout if that's the case
|
@@ -131,25 +131,29 @@ def send_spam(address: str):
|
|
131 |
|
132 |
response_text = json.loads(response.text)
|
133 |
|
134 |
-
|
135 |
|
136 |
mean_inference_latency += response_text[1]
|
137 |
mean_peak_gpu_memory += response_text[2]
|
138 |
n_pads += response_text[3]
|
139 |
n_elems += response_text[4]
|
140 |
sequence_length += response_text[5]
|
|
|
141 |
|
|
|
142 |
mean_padding_ratio = f"{n_pads / n_elems * 100:.2f}"
|
143 |
-
mean_sequence_length = sequence_length /
|
|
|
144 |
|
145 |
-
|
146 |
-
mean_inference_latency = round(mean_inference_latency /
|
147 |
-
mean_peak_gpu_memory = round(mean_peak_gpu_memory /
|
148 |
|
149 |
return get_message_spam(
|
150 |
-
|
151 |
mean_inference_latency,
|
152 |
mean_peak_gpu_memory,
|
153 |
mean_padding_ratio,
|
154 |
mean_sequence_length,
|
|
|
155 |
)
|
|
|
1 |
import json
|
2 |
|
|
|
|
|
3 |
from defaults import (
|
4 |
ADDRESS_BETTERTRANSFORMER,
|
5 |
ADDRESS_VANILLA,
|
6 |
HEADERS,
|
7 |
+
MODEL_NAME,
|
8 |
)
|
9 |
from utils import ElapsedFuturesSession
|
10 |
|
11 |
+
from transformers import AutoTokenizer
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
|
15 |
RETURN_MESSAGE_SINGLE = """
|
16 |
Inference statistics:
|
|
|
26 |
RETURN_MESSAGE_SPAM = (
|
27 |
"""
|
28 |
Processing """
|
29 |
+
+ "NUMBER REQ" + """ inputs sent asynchronously. Grab a coffee.
|
|
|
30 |
|
31 |
Inference statistics:
|
32 |
|
33 |
+
* Throughput: {0} samples/s
|
34 |
* Mean inference latency (preprocessing/forward/postprocessing): {1} ms
|
35 |
* Mean peak GPU memory: {2} MB
|
36 |
* Mean padding ratio: {3} %
|
37 |
* Mean sequence length: {4} tokens
|
38 |
+
* Effective mean batch size: {5}
|
39 |
"""
|
40 |
)
|
41 |
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
43 |
|
44 |
def get_message_single(
|
45 |
status, prediction, inf_latency, peak_gpu_memory, end_to_end_latency, **kwargs
|
|
|
50 |
|
51 |
|
52 |
def get_message_spam(
|
53 |
+
throughput,
|
54 |
mean_inference_latency,
|
55 |
mean_peak_gpu_memory,
|
56 |
mean_padding_ratio,
|
57 |
mean_sequence_length,
|
58 |
+
effective_batch_size,
|
59 |
**kwargs,
|
60 |
):
|
61 |
return RETURN_MESSAGE_SPAM.format(
|
62 |
+
throughput,
|
63 |
mean_inference_latency,
|
64 |
mean_peak_gpu_memory,
|
65 |
mean_padding_ratio,
|
66 |
mean_sequence_length,
|
67 |
+
effective_batch_size,
|
68 |
)
|
69 |
|
70 |
|
71 |
SESSION = ElapsedFuturesSession()
|
72 |
|
|
|
73 |
def send_single(input_model_vanilla, address: str):
|
74 |
assert address in [ADDRESS_VANILLA, ADDRESS_BETTERTRANSFORMER]
|
75 |
|
|
|
96 |
)
|
97 |
|
98 |
|
99 |
+
def send_spam(inp, address: str):
|
100 |
assert address in [ADDRESS_VANILLA, ADDRESS_BETTERTRANSFORMER]
|
101 |
|
102 |
# data = "this is positive lol" #TODO: use dynamic data with padding
|
103 |
+
max_resolution_time = 0
|
|
|
|
|
|
|
|
|
|
|
104 |
mean_inference_latency = 0
|
105 |
mean_peak_gpu_memory = 0
|
106 |
|
107 |
n_pads = 0
|
108 |
n_elems = 0
|
109 |
sequence_length = 0
|
110 |
+
effective_batch_size = 0
|
111 |
|
112 |
promises = []
|
113 |
|
114 |
+
n_inputs = len(inp)
|
115 |
+
|
116 |
+
for i in range(n_inputs):
|
117 |
input_data = inp[i]["sentence"].encode("utf-8")
|
118 |
|
119 |
# should not take more than 15 s, so timeout if that's the case
|
|
|
131 |
|
132 |
response_text = json.loads(response.text)
|
133 |
|
134 |
+
max_resolution_time = max(max_resolution_time, response.elapsed)
|
135 |
|
136 |
mean_inference_latency += response_text[1]
|
137 |
mean_peak_gpu_memory += response_text[2]
|
138 |
n_pads += response_text[3]
|
139 |
n_elems += response_text[4]
|
140 |
sequence_length += response_text[5]
|
141 |
+
effective_batch_size += response_text[6]
|
142 |
|
143 |
+
throughput = n_inputs / (max_resolution_time * 1e-3)
|
144 |
mean_padding_ratio = f"{n_pads / n_elems * 100:.2f}"
|
145 |
+
mean_sequence_length = sequence_length / n_inputs
|
146 |
+
effective_batch_size = effective_batch_size / n_inputs
|
147 |
|
148 |
+
throughput = round(throughput, 2)
|
149 |
+
mean_inference_latency = round(mean_inference_latency / n_inputs, 2)
|
150 |
+
mean_peak_gpu_memory = round(mean_peak_gpu_memory / n_inputs, 2)
|
151 |
|
152 |
return get_message_spam(
|
153 |
+
throughput,
|
154 |
mean_inference_latency,
|
155 |
mean_peak_gpu_memory,
|
156 |
mean_padding_ratio,
|
157 |
mean_sequence_length,
|
158 |
+
effective_batch_size,
|
159 |
)
|
defaults.py
CHANGED
@@ -15,24 +15,26 @@ defaults_bt_single = {
|
|
15 |
}
|
16 |
|
17 |
defaults_vanilla_spam = {
|
18 |
-
"
|
19 |
"mean_inference_latency": 29.69,
|
20 |
"mean_peak_gpu_memory": 3620.9,
|
21 |
"mean_padding_ratio": 35.26,
|
22 |
"mean_sequence_length": 39.395,
|
|
|
23 |
}
|
24 |
|
25 |
defaults_bt_spam = {
|
26 |
-
"
|
27 |
"mean_inference_latency": 29.69,
|
28 |
"mean_peak_gpu_memory": 3620.9,
|
29 |
"mean_padding_ratio": 35.26,
|
30 |
"mean_sequence_length": 39.395,
|
|
|
31 |
}
|
32 |
|
33 |
-
SPAM_N_REQUESTS = 200
|
34 |
BATCH_SIZE = 8 # fixed!
|
35 |
|
36 |
HEADERS = {"Content-Type": "text/plain"}
|
37 |
ADDRESS_VANILLA = "http://3.83.142.46:8080/predictions/my_tc"
|
38 |
ADDRESS_BETTERTRANSFORMER = "http://3.95.136.2:8080/predictions/my_tc"
|
|
|
|
15 |
}
|
16 |
|
17 |
defaults_vanilla_spam = {
|
18 |
+
"throughput": 20,
|
19 |
"mean_inference_latency": 29.69,
|
20 |
"mean_peak_gpu_memory": 3620.9,
|
21 |
"mean_padding_ratio": 35.26,
|
22 |
"mean_sequence_length": 39.395,
|
23 |
+
"effective_batch_size": 8,
|
24 |
}
|
25 |
|
26 |
defaults_bt_spam = {
|
27 |
+
"throughput": 20,
|
28 |
"mean_inference_latency": 29.69,
|
29 |
"mean_peak_gpu_memory": 3620.9,
|
30 |
"mean_padding_ratio": 35.26,
|
31 |
"mean_sequence_length": 39.395,
|
32 |
+
"effective_batch_size": 8,
|
33 |
}
|
34 |
|
|
|
35 |
BATCH_SIZE = 8 # fixed!
|
36 |
|
37 |
HEADERS = {"Content-Type": "text/plain"}
|
38 |
ADDRESS_VANILLA = "http://3.83.142.46:8080/predictions/my_tc"
|
39 |
ADDRESS_BETTERTRANSFORMER = "http://3.95.136.2:8080/predictions/my_tc"
|
40 |
+
MODEL_NAME = "distilbert-base-uncased-finetuned-sst-2-english"
|