import gradio as gr from diffusers import DiffusionPipeline import random # Load your model with LoRA weights pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev") pipe.load_lora_weights("fyp1/pattern_generation") def generate_images(prompt, num_images=3): # Generate multiple images based on the prompt images = [] for _ in range(num_images): # Generate a random seed for each image to ensure diversity seed = random.randint(0, 100000) image = pipe(prompt, parameters={"seed": seed}).images[0] images.append(image) return images # Define the Gradio interface iface = gr.Interface( fn=generate_images, inputs=[ gr.Textbox(label="Enter your prompt", lines=2, placeholder="A Kashmiri shawl-inspired pattern..."), gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Number of images to generate") ], outputs=[ gr.Gallery(label="Generated Images").style(height=300) ], title="Pattern Generation", description="Generate multiple unique patterns based on your prompt." ) iface.launch()