""" Module for detecting fallacies in text. Functions: - rebuttal_generator: Detects fallacies in a text input by utilizing models for fallacy detection and semantic textual similarity and generates a rebuttal for the fallacious claim. - query: Sends a query to a specified API endpoint with the provided payload and returns the response. - demo: Launches a Gradio interface for interactively detecting fallacies in text. Dependencies: - os: Provides a portable way of using operating system dependent functionality. - json: Provides functions for encoding and decoding JSON data. - requests: Allows sending HTTP requests easily. - gradio: Facilitates the creation of customizable UI components for machine learning models. - langchain_google_genai: Wrapper for Google Generative AI language models. - auxiliar: Contains auxiliary data used in the fallacy detection process. Environment Variables: - HF_API_KEY: API key for accessing Hugging Face model APIs. - GOOGLE_API_KEY: API key for accessing Google APIs. Constants: - FLICC_MODEL: API endpoint for the FLICC model used for fallacy detection. - CARDS_MODEL: API endpoint for the CARDS model used for fallacy detection. - SEMANTIC_TEXTUAL_SIMILARITY: API endpoint for the model used for semantic textual similarity. Global Variables: - hf_api_key: API key for accessing Hugging Face model APIs. - google_key: API key for accessing Google APIs. - safety_settings: Settings for safety measures in the Google Generative AI model. - llm: Instance of the GoogleGenerativeAI class for text generation. - similarity_template: Template for generating prompts for similarity comparison. - FALLACY_CLAIMS: Dictionary containing fallacy labels and corresponding claims. - DEBUNKINGS: Dictionary containing debunkings for fallacy claims. - DEFINITIONS: Dictionary containing definitions for fallacy labels. """ import os import json import requests from langchain_google_genai import GoogleGenerativeAI from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from .auxiliar import ( FALLACY_CLAIMS, DEBUNKINGS, DEFINITIONS, SIMILARITY_TEMPLATE, ) hf_api_key = os.environ["HF_API_KEY"] google_key = os.environ["GOOGLE_API_KEY"] llm = GoogleGenerativeAI( model="models/text-bison-001", google_api_key=google_key, temperature=0, # safety_settings=safety_settings, ) similarity_template = PromptTemplate.from_template(SIMILARITY_TEMPLATE) def query(payload, api_url, api_token=hf_api_key): """ Sends a query to the specified API endpoint with the provided payload. Args: payload (dict): The payload to be sent to the API. api_url (str): The URL of the API endpoint. api_token (str, optional): The API token used for authentication. Defaults to hf_api_key. Returns: dict: The JSON response from the API. Raises: ValueError: If the response content cannot be decoded as UTF-8. Example: >>> query({"text": "example text"}, "https://api.example.com") {'status': 'success', 'result': 'example result'} """ headers = {"Authorization": f"Bearer {api_token}"} options = {"use_cache": False, "wait_for_model": True} payload = {"inputs": payload, "options": options} response = requests.post(api_url, headers=headers, json=payload) return json.loads(response.content.decode("utf-8")) FLICC_MODEL = "https://api-inference.huggingface.co/models/fzanartu/flicc" CARDS_MODEL = ( "https://api-inference.huggingface.co/models/crarojasca/BinaryAugmentedCARDS" ) SEMANTIC_TEXTUAL_SIMILARITY = ( "https://api-inference.huggingface.co/models/sentence-transformers/all-MiniLM-L6-v2" ) def rebuttal_generator(text): """ Generates a rebuttal for a text containing a detected fallacy. This function detects fallacies in the input text and generates a rebuttal for the fallacious claim. Args: text (str): The input text containing a potentially fallacious claim. Returns: str: A rebuttal for the fallacious claim in the input text. Raises: ValueError: If no similar sentence is found. Example: >>> rebuttal_generator("This is a text containing a fallacy.") 'A rebuttal to the fallacy of [fallacy label]: [rebuttal]' """ response = query(text, api_url=CARDS_MODEL) if response[0][0].get("label") == "Contrarian": response = query(text, api_url=FLICC_MODEL) label = response[0][0].get("label") claims = FALLACY_CLAIMS.get(label, None) if claims: data = query( {"source_sentence": text, "sentences": claims}, api_url=SEMANTIC_TEXTUAL_SIMILARITY, ) max_similarity = data.index(max(data)) chain = LLMChain(llm=llm, prompt=similarity_template, verbose=True) result = chain.run( { "claim": claims[max_similarity], "fallacy": label, "definition": DEFINITIONS.get(label), "example": DEBUNKINGS.get(claims[max_similarity]), "text": text, } ) else: raise ValueError("No similar sentence found") else: result = "No fallacy has been detected in your text." return result