Spaces:
Paused
Paused
Upload 3 files
Browse files- gifs_filter.py +68 -0
- invert_utils.py +89 -0
- text2vid_modded_full.py +612 -0
gifs_filter.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# filter images
|
2 |
+
from PIL import Image, ImageSequence
|
3 |
+
import requests
|
4 |
+
from tqdm import tqdm
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from transformers import CLIPProcessor, CLIPModel
|
8 |
+
|
9 |
+
def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
|
10 |
+
converted_len = int(clip_len * frame_sample_rate)
|
11 |
+
end_idx = np.random.randint(converted_len, seg_len)
|
12 |
+
start_idx = end_idx - converted_len
|
13 |
+
indices = np.linspace(start_idx, end_idx, num=clip_len)
|
14 |
+
indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
|
15 |
+
return indices
|
16 |
+
|
17 |
+
def load_frames(image: Image, mode='RGBA'):
|
18 |
+
return np.array([
|
19 |
+
np.array(frame.convert(mode))
|
20 |
+
for frame in ImageSequence.Iterator(image)
|
21 |
+
])
|
22 |
+
|
23 |
+
img_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
24 |
+
img_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
def filter(gifs, input_image):
|
29 |
+
max_cosine = 0.9
|
30 |
+
max_gif = []
|
31 |
+
|
32 |
+
for gif in tqdm(gifs, total=len(gifs)):
|
33 |
+
with Image.open(gif) as im:
|
34 |
+
frames = load_frames(im)
|
35 |
+
|
36 |
+
frames = np.array(frames)
|
37 |
+
frames = frames[:, :, :, :3]
|
38 |
+
frames = np.transpose(frames, (0, 3, 1, 2))[1:]
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
image = Image.open(input_image)
|
43 |
+
|
44 |
+
|
45 |
+
inputs = img_processor(images=frames, return_tensors="pt", padding=False)
|
46 |
+
inputs_base = img_processor(images=image, return_tensors="pt", padding=False)
|
47 |
+
|
48 |
+
with torch.no_grad():
|
49 |
+
feat_img_base = img_model.get_image_features(pixel_values=inputs_base["pixel_values"])
|
50 |
+
feat_img_vid = img_model.get_image_features(pixel_values=inputs["pixel_values"])
|
51 |
+
cos_avg = 0
|
52 |
+
avg_score_for_vid = 0
|
53 |
+
for i in range(len(feat_img_vid)):
|
54 |
+
|
55 |
+
cosine_similarity = torch.nn.functional.cosine_similarity(
|
56 |
+
feat_img_base,
|
57 |
+
feat_img_vid[0].unsqueeze(0),
|
58 |
+
dim=1)
|
59 |
+
# print(cosine_similarity)
|
60 |
+
cos_avg += cosine_similarity.item()
|
61 |
+
|
62 |
+
cos_avg /= len(feat_img_vid)
|
63 |
+
print("Current cosine similarity: ", cos_avg)
|
64 |
+
print("Max cosine similarity: ", max_cosine)
|
65 |
+
if cos_avg > max_cosine:
|
66 |
+
# max_cosine = cos_avg
|
67 |
+
max_gif.append(gif)
|
68 |
+
return max_gif
|
invert_utils.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import imageio
|
3 |
+
import numpy as np
|
4 |
+
from typing import Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torchvision
|
8 |
+
|
9 |
+
from tqdm import tqdm
|
10 |
+
from einops import rearrange
|
11 |
+
|
12 |
+
|
13 |
+
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=8):
|
14 |
+
videos = rearrange(videos, "b c t h w -> t b c h w")
|
15 |
+
outputs = []
|
16 |
+
for x in videos:
|
17 |
+
x = torchvision.utils.make_grid(x, nrow=n_rows)
|
18 |
+
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
19 |
+
if rescale:
|
20 |
+
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
21 |
+
x = (x * 255).numpy().astype(np.uint8)
|
22 |
+
outputs.append(x)
|
23 |
+
|
24 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
25 |
+
imageio.mimsave(path, outputs, fps=fps)
|
26 |
+
|
27 |
+
|
28 |
+
# DDIM Inversion
|
29 |
+
@torch.no_grad()
|
30 |
+
def init_prompt(prompt, pipeline):
|
31 |
+
uncond_input = pipeline.tokenizer(
|
32 |
+
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
|
33 |
+
return_tensors="pt"
|
34 |
+
)
|
35 |
+
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
|
36 |
+
text_input = pipeline.tokenizer(
|
37 |
+
[prompt],
|
38 |
+
padding="max_length",
|
39 |
+
max_length=pipeline.tokenizer.model_max_length,
|
40 |
+
truncation=True,
|
41 |
+
return_tensors="pt",
|
42 |
+
)
|
43 |
+
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
|
44 |
+
context = torch.cat([uncond_embeddings, text_embeddings])
|
45 |
+
|
46 |
+
return context
|
47 |
+
|
48 |
+
|
49 |
+
def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
|
50 |
+
sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
|
51 |
+
timestep, next_timestep = min(
|
52 |
+
timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
|
53 |
+
# try:
|
54 |
+
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
|
55 |
+
# except:
|
56 |
+
# alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] #if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
|
57 |
+
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
|
58 |
+
beta_prod_t = 1 - alpha_prod_t
|
59 |
+
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
|
60 |
+
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
|
61 |
+
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
|
62 |
+
return next_sample
|
63 |
+
|
64 |
+
|
65 |
+
def get_noise_pred_single(latents, t, context, unet):
|
66 |
+
noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
|
67 |
+
return noise_pred
|
68 |
+
|
69 |
+
|
70 |
+
@torch.no_grad()
|
71 |
+
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
|
72 |
+
context = init_prompt(prompt, pipeline)
|
73 |
+
uncond_embeddings, cond_embeddings = context.chunk(2)
|
74 |
+
all_latent = [latent]
|
75 |
+
latent = latent.clone().detach()
|
76 |
+
for i in tqdm(range(num_inv_steps)):
|
77 |
+
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
|
78 |
+
noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
|
79 |
+
noise_pred_unc = get_noise_pred_single(latent, t, uncond_embeddings, pipeline.unet)
|
80 |
+
noise_pred = noise_pred_unc + 9.0 * (noise_pred_unc - noise_pred)
|
81 |
+
latent = next_step(noise_pred, t, latent, ddim_scheduler)
|
82 |
+
all_latent.append(latent)
|
83 |
+
return all_latent
|
84 |
+
|
85 |
+
|
86 |
+
@torch.no_grad()
|
87 |
+
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
|
88 |
+
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
|
89 |
+
return ddim_latents
|
text2vid_modded_full.py
ADDED
@@ -0,0 +1,612 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
5 |
+
from diffusers.image_processor import VaeImageProcessor
|
6 |
+
from diffusers.models import AutoencoderKL, UNet3DConditionModel
|
7 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
8 |
+
from diffusers.utils import (
|
9 |
+
logging,
|
10 |
+
replace_example_docstring)
|
11 |
+
from diffusers.pipelines.text_to_video_synthesis import TextToVideoSDPipelineOutput
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
TAU_2 = 15
|
16 |
+
TAU_1 = 10
|
17 |
+
|
18 |
+
|
19 |
+
def init_attention_params(unet, num_frames, lambda_=None, bs=None):
|
20 |
+
|
21 |
+
|
22 |
+
for name, module in unet.named_modules():
|
23 |
+
module_name = type(module).__name__
|
24 |
+
if module_name == "Attention":
|
25 |
+
module.LAMBDA = lambda_
|
26 |
+
module.bs = bs
|
27 |
+
module.num_frames = num_frames
|
28 |
+
module.last_attn_slice_weights = 1
|
29 |
+
|
30 |
+
def init_attention_func(unet):
|
31 |
+
# ORIGINAL SOURCE CODE: https://github.com/huggingface/diffusers/blob/91ddd2a25b848df0fa1262d4f1cd98c7ccb87750/src/diffusers/models/attention.py#L276
|
32 |
+
# Updated source code: https://github.com/huggingface/diffusers/blob/50296739878f3e17b2d25d45ef626318b44440b9/src/diffusers/models/attention_processor.py#L571
|
33 |
+
def get_attention_scores(
|
34 |
+
self, query, key, attention_mask = None):
|
35 |
+
r"""
|
36 |
+
Compute the attention scores.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
query (`torch.Tensor`): The query tensor.
|
40 |
+
key (`torch.Tensor`): The key tensor.
|
41 |
+
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.
|
42 |
+
|
43 |
+
Returns:
|
44 |
+
`torch.Tensor`: The attention probabilities/scores.
|
45 |
+
"""
|
46 |
+
|
47 |
+
q_old = query.clone()
|
48 |
+
k_old = key.clone()
|
49 |
+
|
50 |
+
if self.use_last_attn_slice:
|
51 |
+
if self.last_attn_slice is not None:
|
52 |
+
query_list = self.last_attn_slice[0]
|
53 |
+
key_list = self.last_attn_slice[1]
|
54 |
+
|
55 |
+
if query.shape[1] == self.num_frames and query.shape == key.shape:
|
56 |
+
|
57 |
+
key1 = key.clone()
|
58 |
+
key1[:,:1,:key_list.shape[2]] = key_list[:,:1]
|
59 |
+
|
60 |
+
if q_old.shape == k_old.shape and q_old.shape[1]!=self.num_frames:
|
61 |
+
|
62 |
+
batch_dim = query_list.shape[0] // self.bs
|
63 |
+
all_dim = query.shape[0] // self.bs
|
64 |
+
for i in range(self.bs):
|
65 |
+
query[i*all_dim:(i*all_dim) + batch_dim,:query_list.shape[1],:query_list.shape[2]] = query_list[i*batch_dim:(i+1)*batch_dim]
|
66 |
+
|
67 |
+
|
68 |
+
dtype = query.dtype
|
69 |
+
if self.upcast_attention:
|
70 |
+
query = query.float()
|
71 |
+
key = key.float()
|
72 |
+
|
73 |
+
|
74 |
+
if attention_mask is None:
|
75 |
+
baddbmm_input = torch.empty(
|
76 |
+
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
|
77 |
+
)
|
78 |
+
beta = 0
|
79 |
+
else:
|
80 |
+
baddbmm_input = attention_mask
|
81 |
+
beta = 1
|
82 |
+
|
83 |
+
|
84 |
+
attention_scores = torch.baddbmm(
|
85 |
+
baddbmm_input,
|
86 |
+
query,
|
87 |
+
key.transpose(-1, -2),
|
88 |
+
beta=beta,
|
89 |
+
alpha=self.scale,
|
90 |
+
)
|
91 |
+
|
92 |
+
if query.shape[1] == self.num_frames and query.shape == key.shape and self.use_last_attn_slice:
|
93 |
+
attention_scores1 = torch.baddbmm(
|
94 |
+
baddbmm_input,
|
95 |
+
query,
|
96 |
+
key1.transpose(-1, -2),
|
97 |
+
beta=beta,
|
98 |
+
alpha=self.scale,
|
99 |
+
)
|
100 |
+
dynamic_lambda = torch.tensor([1 + self.LAMBDA * (i/50) for i in range(self.num_frames)]).to(dtype).cuda()
|
101 |
+
attention_scores[:,:self.num_frames,0] = attention_scores1[:,:self.num_frames,0] * dynamic_lambda
|
102 |
+
|
103 |
+
|
104 |
+
del baddbmm_input
|
105 |
+
|
106 |
+
if self.upcast_softmax:
|
107 |
+
attention_scores = attention_scores.float()
|
108 |
+
|
109 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
110 |
+
|
111 |
+
|
112 |
+
if self.use_last_attn_slice:
|
113 |
+
self.use_last_attn_slice = False
|
114 |
+
|
115 |
+
if self.save_last_attn_slice:
|
116 |
+
|
117 |
+
self.last_attn_slice = [
|
118 |
+
query,
|
119 |
+
key,
|
120 |
+
]
|
121 |
+
|
122 |
+
self.save_last_attn_slice = False
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
del attention_scores
|
127 |
+
attention_probs = attention_probs.to(dtype)
|
128 |
+
|
129 |
+
|
130 |
+
return attention_probs
|
131 |
+
|
132 |
+
|
133 |
+
for _, module in unet.named_modules():
|
134 |
+
module_name = type(module).__name__
|
135 |
+
|
136 |
+
if module_name == "Attention":
|
137 |
+
module.last_attn_slice = None
|
138 |
+
module.use_last_attn_slice = False
|
139 |
+
module.save_last_attn_slice = False
|
140 |
+
module.LAMBDA = 0
|
141 |
+
module.get_attention_scores = get_attention_scores.__get__(module, type(module))
|
142 |
+
|
143 |
+
module.bs = 0
|
144 |
+
module.num_frames = None
|
145 |
+
|
146 |
+
return unet
|
147 |
+
|
148 |
+
|
149 |
+
def use_last_self_attention(unet, use=True):
|
150 |
+
for name, module in unet.named_modules():
|
151 |
+
module_name = type(module).__name__
|
152 |
+
if module_name == "Attention" and "attn1" in name:
|
153 |
+
module.use_last_attn_slice = use
|
154 |
+
|
155 |
+
def save_last_self_attention(unet, save=True):
|
156 |
+
for name, module in unet.named_modules():
|
157 |
+
module_name = type(module).__name__
|
158 |
+
if module_name == "Attention" and "attn1" in name:
|
159 |
+
module.save_last_attn_slice = save
|
160 |
+
|
161 |
+
|
162 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
163 |
+
|
164 |
+
EXAMPLE_DOC_STRING = """
|
165 |
+
Examples:
|
166 |
+
```py
|
167 |
+
>>> import torch
|
168 |
+
>>> from diffusers import TextToVideoSDPipeline
|
169 |
+
>>> from diffusers.utils import export_to_video
|
170 |
+
|
171 |
+
>>> pipe = TextToVideoSDPipeline.from_pretrained(
|
172 |
+
... "damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"
|
173 |
+
... )
|
174 |
+
>>> pipe.enable_model_cpu_offload()
|
175 |
+
|
176 |
+
>>> prompt = "Spiderman is surfing"
|
177 |
+
>>> video_frames = pipe(prompt).frames[0]
|
178 |
+
>>> video_path = export_to_video(video_frames)
|
179 |
+
>>> video_path
|
180 |
+
```
|
181 |
+
"""
|
182 |
+
|
183 |
+
|
184 |
+
# Copied from diffusers.pipelines.animatediff.pipeline_animatediff.tensor2vid
|
185 |
+
def tensor2vid(video: torch.Tensor, processor: "VaeImageProcessor", output_type: str = "np"):
|
186 |
+
batch_size, channels, num_frames, height, width = video.shape
|
187 |
+
outputs = []
|
188 |
+
for batch_idx in range(batch_size):
|
189 |
+
batch_vid = video[batch_idx].permute(1, 0, 2, 3)
|
190 |
+
batch_output = processor.postprocess(batch_vid, output_type)
|
191 |
+
|
192 |
+
outputs.append(batch_output)
|
193 |
+
|
194 |
+
if output_type == "np":
|
195 |
+
outputs = np.stack(outputs)
|
196 |
+
|
197 |
+
elif output_type == "pt":
|
198 |
+
outputs = torch.stack(outputs)
|
199 |
+
|
200 |
+
elif not output_type == "pil":
|
201 |
+
raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']")
|
202 |
+
|
203 |
+
return outputs
|
204 |
+
|
205 |
+
from diffusers import TextToVideoSDPipeline
|
206 |
+
class TextToVideoSDPipelineModded(TextToVideoSDPipeline):
|
207 |
+
def __init__(
|
208 |
+
self,
|
209 |
+
vae: AutoencoderKL,
|
210 |
+
text_encoder: CLIPTextModel,
|
211 |
+
tokenizer: CLIPTokenizer,
|
212 |
+
unet: UNet3DConditionModel,
|
213 |
+
scheduler: KarrasDiffusionSchedulers,
|
214 |
+
):
|
215 |
+
super().__init__(vae, text_encoder, tokenizer, unet, scheduler)
|
216 |
+
|
217 |
+
|
218 |
+
def call_network(self,
|
219 |
+
negative_prompt_embeds,
|
220 |
+
prompt_embeds,
|
221 |
+
latents,
|
222 |
+
inv_latents,
|
223 |
+
t,
|
224 |
+
i,
|
225 |
+
null_embeds,
|
226 |
+
cross_attention_kwargs,
|
227 |
+
extra_step_kwargs,
|
228 |
+
do_classifier_free_guidance,
|
229 |
+
guidance_scale,
|
230 |
+
):
|
231 |
+
|
232 |
+
|
233 |
+
inv_latent_model_input = inv_latents
|
234 |
+
inv_latent_model_input = self.scheduler.scale_model_input(inv_latent_model_input, t)
|
235 |
+
|
236 |
+
latent_model_input = latents
|
237 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
238 |
+
|
239 |
+
|
240 |
+
if do_classifier_free_guidance:
|
241 |
+
noise_pred_uncond = self.unet(
|
242 |
+
latent_model_input,
|
243 |
+
t,
|
244 |
+
encoder_hidden_states=negative_prompt_embeds,
|
245 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
246 |
+
return_dict=False,
|
247 |
+
)[0]
|
248 |
+
|
249 |
+
noise_null_pred_uncond = self.unet(
|
250 |
+
inv_latent_model_input,
|
251 |
+
t,
|
252 |
+
encoder_hidden_states=negative_prompt_embeds,
|
253 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
254 |
+
return_dict=False,
|
255 |
+
)[0]
|
256 |
+
|
257 |
+
|
258 |
+
|
259 |
+
if i<=TAU_2:
|
260 |
+
save_last_self_attention(self.unet)
|
261 |
+
|
262 |
+
|
263 |
+
noise_null_pred = self.unet(
|
264 |
+
inv_latent_model_input,
|
265 |
+
t,
|
266 |
+
encoder_hidden_states=null_embeds,
|
267 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
268 |
+
return_dict=False,
|
269 |
+
)[0]
|
270 |
+
|
271 |
+
if do_classifier_free_guidance:
|
272 |
+
noise_null_pred = noise_null_pred_uncond + guidance_scale * (noise_null_pred - noise_null_pred_uncond)
|
273 |
+
|
274 |
+
bsz, channel, frames, width, height = inv_latents.shape
|
275 |
+
|
276 |
+
inv_latents = inv_latents.permute(0, 2, 1, 3, 4).reshape(bsz*frames, channel, height, width)
|
277 |
+
noise_null_pred = noise_null_pred.permute(0, 2, 1, 3, 4).reshape(bsz*frames, channel, height, width)
|
278 |
+
inv_latents = self.scheduler.step(noise_null_pred, t, inv_latents, **extra_step_kwargs).prev_sample
|
279 |
+
inv_latents = inv_latents[None, :].reshape((bsz, frames , -1) + inv_latents.shape[2:]).permute(0, 2, 1, 3, 4)
|
280 |
+
|
281 |
+
use_last_self_attention(self.unet)
|
282 |
+
else:
|
283 |
+
noise_null_pred = None
|
284 |
+
|
285 |
+
|
286 |
+
|
287 |
+
|
288 |
+
noise_pred = self.unet(
|
289 |
+
latent_model_input,
|
290 |
+
t,
|
291 |
+
encoder_hidden_states=prompt_embeds, # For unconditional guidance
|
292 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
293 |
+
return_dict=False,
|
294 |
+
)[0]
|
295 |
+
|
296 |
+
use_last_self_attention(self.unet, False)
|
297 |
+
|
298 |
+
|
299 |
+
if do_classifier_free_guidance:
|
300 |
+
noise_pred_text = noise_pred
|
301 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
302 |
+
|
303 |
+
# reshape latents
|
304 |
+
bsz, channel, frames, width, height = latents.shape
|
305 |
+
latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
|
306 |
+
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
|
307 |
+
|
308 |
+
# compute the previous noisy sample x_t -> x_t-1
|
309 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
310 |
+
|
311 |
+
|
312 |
+
|
313 |
+
# reshape latents back
|
314 |
+
latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4)
|
315 |
+
|
316 |
+
|
317 |
+
return {
|
318 |
+
"latents": latents,
|
319 |
+
"inv_latents": inv_latents,
|
320 |
+
"noise_pred": noise_pred,
|
321 |
+
"noise_null_pred": noise_null_pred,
|
322 |
+
}
|
323 |
+
|
324 |
+
def optimize_latents(self, latents, inv_latents, t, i, null_embeds, cross_attention_kwargs, prompt_embeds):
|
325 |
+
inv_scaled = self.scheduler.scale_model_input(inv_latents, t)
|
326 |
+
|
327 |
+
noise_null_pred = self.unet(
|
328 |
+
inv_scaled[:,:,0:1,:,:],
|
329 |
+
t,
|
330 |
+
encoder_hidden_states=null_embeds,
|
331 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
332 |
+
return_dict=False,
|
333 |
+
)[0]
|
334 |
+
|
335 |
+
with torch.enable_grad():
|
336 |
+
|
337 |
+
latent_train = latents[:,:,1:,:,:].clone().detach().requires_grad_(True)
|
338 |
+
optimizer = torch.optim.Adam([latent_train], lr=1e-3)
|
339 |
+
|
340 |
+
for j in range(10):
|
341 |
+
latent_in = torch.cat([inv_latents[:,:,0:1,:,:].detach(), latent_train], dim=2)
|
342 |
+
latent_input_unet = self.scheduler.scale_model_input(latent_in, t)
|
343 |
+
|
344 |
+
noise_pred = self.unet(
|
345 |
+
latent_input_unet,
|
346 |
+
t,
|
347 |
+
encoder_hidden_states=prompt_embeds, # For unconditional guidance
|
348 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
349 |
+
return_dict=False,
|
350 |
+
)[0]
|
351 |
+
|
352 |
+
loss = torch.nn.functional.mse_loss(noise_pred[:,:,0,:,:], noise_null_pred[:,:,0,:,:])
|
353 |
+
|
354 |
+
loss.backward()
|
355 |
+
|
356 |
+
optimizer.step()
|
357 |
+
optimizer.zero_grad()
|
358 |
+
|
359 |
+
print("Iteration {} Subiteration {} Loss {} ".format(i, j, loss.item()))
|
360 |
+
latents = latent_in.detach()
|
361 |
+
return latents
|
362 |
+
|
363 |
+
@torch.no_grad()
|
364 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
365 |
+
def __call__(
|
366 |
+
self,
|
367 |
+
prompt: Union[str, List[str]] = None,
|
368 |
+
height: Optional[int] = None,
|
369 |
+
width: Optional[int] = None,
|
370 |
+
num_frames: int = 16,
|
371 |
+
num_inference_steps: int = 50,
|
372 |
+
guidance_scale: float = 9.0,
|
373 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
374 |
+
eta: float = 0.0,
|
375 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
376 |
+
latents: Optional[torch.FloatTensor] = None,
|
377 |
+
inv_latents: Optional[torch.FloatTensor] = None,
|
378 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
379 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
380 |
+
output_type: Optional[str] = "np",
|
381 |
+
return_dict: bool = True,
|
382 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
383 |
+
callback_steps: int = 1,
|
384 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
385 |
+
clip_skip: Optional[int] = None,
|
386 |
+
lambda_ = 0.5,
|
387 |
+
):
|
388 |
+
r"""
|
389 |
+
The call function to the pipeline for generation.
|
390 |
+
|
391 |
+
Args:
|
392 |
+
prompt (`str` or `List[str]`, *optional*):
|
393 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
394 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
395 |
+
The height in pixels of the generated video.
|
396 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
397 |
+
The width in pixels of the generated video.
|
398 |
+
num_frames (`int`, *optional*, defaults to 16):
|
399 |
+
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
|
400 |
+
amounts to 2 seconds of video.
|
401 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
402 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
|
403 |
+
expense of slower inference.
|
404 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
405 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
406 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
407 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
408 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
409 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
410 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
411 |
+
The number of images to generate per prompt.
|
412 |
+
eta (`float`, *optional*, defaults to 0.0):
|
413 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
414 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
415 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
416 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
417 |
+
generation deterministic.
|
418 |
+
latents (`torch.FloatTensor`, *optional*):
|
419 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
|
420 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
421 |
+
tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
|
422 |
+
`(batch_size, num_channel, num_frames, height, width)`.
|
423 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
424 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
425 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
426 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
427 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
428 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
429 |
+
output_type (`str`, *optional*, defaults to `"np"`):
|
430 |
+
The output format of the generated video. Choose between `torch.FloatTensor` or `np.array`.
|
431 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
432 |
+
Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
|
433 |
+
of a plain tuple.
|
434 |
+
callback (`Callable`, *optional*):
|
435 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
436 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
437 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
438 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
439 |
+
every step.
|
440 |
+
cross_attention_kwargs (`dict`, *optional*):
|
441 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
442 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
443 |
+
clip_skip (`int`, *optional*):
|
444 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
445 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
446 |
+
Examples:
|
447 |
+
|
448 |
+
Returns:
|
449 |
+
[`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`:
|
450 |
+
If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is
|
451 |
+
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
|
452 |
+
"""
|
453 |
+
# 0. Default height and width to unet
|
454 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
455 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
456 |
+
|
457 |
+
num_images_per_prompt = 1
|
458 |
+
|
459 |
+
# 1. Check inputs. Raise error if not correct
|
460 |
+
self.check_inputs(
|
461 |
+
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
462 |
+
)
|
463 |
+
|
464 |
+
# # 2. Define call parameters
|
465 |
+
# if prompt is not None and isinstance(prompt, str):
|
466 |
+
# batch_size = 1
|
467 |
+
# elif prompt is not None and isinstance(prompt, list):
|
468 |
+
# batch_size = len(prompt)
|
469 |
+
# else:
|
470 |
+
# batch_size = prompt_embeds.shape[0]
|
471 |
+
|
472 |
+
batch_size = inv_latents.shape[0]
|
473 |
+
device = self._execution_device
|
474 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
475 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
476 |
+
# corresponds to doing no classifier free guidance.
|
477 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
478 |
+
|
479 |
+
# 3. Encode input prompt
|
480 |
+
text_encoder_lora_scale = (
|
481 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
482 |
+
)
|
483 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
484 |
+
[prompt] * batch_size,
|
485 |
+
device,
|
486 |
+
num_images_per_prompt,
|
487 |
+
do_classifier_free_guidance,
|
488 |
+
[negative_prompt] * batch_size if negative_prompt is not None else None,
|
489 |
+
prompt_embeds=prompt_embeds,
|
490 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
491 |
+
lora_scale=text_encoder_lora_scale,
|
492 |
+
clip_skip=clip_skip,
|
493 |
+
)
|
494 |
+
null_embeds, negative_prompt_embeds = self.encode_prompt(
|
495 |
+
[""] * batch_size,
|
496 |
+
device,
|
497 |
+
num_images_per_prompt,
|
498 |
+
do_classifier_free_guidance,
|
499 |
+
[negative_prompt] * batch_size if negative_prompt is not None else None,
|
500 |
+
prompt_embeds=None,
|
501 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
502 |
+
lora_scale=text_encoder_lora_scale,
|
503 |
+
clip_skip=clip_skip,
|
504 |
+
)
|
505 |
+
|
506 |
+
|
507 |
+
|
508 |
+
# 4. Prepare timesteps
|
509 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
510 |
+
timesteps = self.scheduler.timesteps
|
511 |
+
|
512 |
+
# 5. Prepare latent variables
|
513 |
+
num_channels_latents = self.unet.config.in_channels
|
514 |
+
latents = self.prepare_latents(
|
515 |
+
batch_size * num_images_per_prompt,
|
516 |
+
num_channels_latents,
|
517 |
+
num_frames,
|
518 |
+
height,
|
519 |
+
width,
|
520 |
+
prompt_embeds.dtype,
|
521 |
+
device,
|
522 |
+
generator,
|
523 |
+
latents,
|
524 |
+
)
|
525 |
+
inv_latents = self.prepare_latents(
|
526 |
+
batch_size * num_images_per_prompt,
|
527 |
+
num_channels_latents,
|
528 |
+
num_frames,
|
529 |
+
height,
|
530 |
+
width,
|
531 |
+
prompt_embeds.dtype,
|
532 |
+
device,
|
533 |
+
generator,
|
534 |
+
inv_latents,
|
535 |
+
)
|
536 |
+
|
537 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
538 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
539 |
+
|
540 |
+
# 7. Denoising loop
|
541 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
542 |
+
|
543 |
+
init_attention_func(self.unet)
|
544 |
+
print("Setup for Current Run")
|
545 |
+
print("----------------------")
|
546 |
+
print("Prompt ", prompt)
|
547 |
+
print("Batch size ", batch_size)
|
548 |
+
print("Num frames ", latents.shape[2])
|
549 |
+
print("Lambda ", lambda_)
|
550 |
+
|
551 |
+
init_attention_params(self.unet, num_frames=latents.shape[2], lambda_=lambda_, bs = batch_size)
|
552 |
+
|
553 |
+
iters_to_alter = [i for i in range(0, TAU_1)]
|
554 |
+
|
555 |
+
|
556 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
557 |
+
|
558 |
+
mask_in = torch.zeros(latents.shape).to(dtype=latents.dtype, device=latents.device)
|
559 |
+
mask_in[:, :, 0, :, :] = 1
|
560 |
+
assert latents.shape[0] == inv_latents.shape[0], "Latents and Inverse Latents should have the same batch but got {} and {}".format(latents.shape[0], inv_latents.shape[0])
|
561 |
+
inv_latents = inv_latents.repeat(1,1,num_frames,1,1)
|
562 |
+
|
563 |
+
latents = inv_latents * mask_in + latents * (1-mask_in)
|
564 |
+
|
565 |
+
|
566 |
+
|
567 |
+
for i, t in enumerate(timesteps):
|
568 |
+
|
569 |
+
curr_copy = max(1,num_frames - i)
|
570 |
+
inv_latents = inv_latents[:,:,:curr_copy, :, : ]
|
571 |
+
if i in iters_to_alter:
|
572 |
+
|
573 |
+
latents = self.optimize_latents(latents, inv_latents, t, i, null_embeds, cross_attention_kwargs, prompt_embeds)
|
574 |
+
|
575 |
+
|
576 |
+
output_dict = self.call_network(
|
577 |
+
negative_prompt_embeds,
|
578 |
+
prompt_embeds,
|
579 |
+
latents,
|
580 |
+
inv_latents,
|
581 |
+
t,
|
582 |
+
i,
|
583 |
+
null_embeds,
|
584 |
+
cross_attention_kwargs,
|
585 |
+
extra_step_kwargs,
|
586 |
+
do_classifier_free_guidance,
|
587 |
+
guidance_scale,
|
588 |
+
)
|
589 |
+
latents = output_dict["latents"]
|
590 |
+
inv_latents = output_dict["inv_latents"]
|
591 |
+
|
592 |
+
# call the callback, if provided
|
593 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
594 |
+
progress_bar.update()
|
595 |
+
if callback is not None and i % callback_steps == 0:
|
596 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
597 |
+
callback(step_idx, t, latents)
|
598 |
+
|
599 |
+
# 8. Post processing
|
600 |
+
if output_type == "latent":
|
601 |
+
video = latents
|
602 |
+
else:
|
603 |
+
video_tensor = self.decode_latents(latents)
|
604 |
+
video = tensor2vid(video_tensor, self.image_processor, output_type)
|
605 |
+
|
606 |
+
# 9. Offload all models
|
607 |
+
self.maybe_free_model_hooks()
|
608 |
+
|
609 |
+
if not return_dict:
|
610 |
+
return (video,)
|
611 |
+
|
612 |
+
return TextToVideoSDPipelineOutput(frames=video)
|