g30rv17ys commited on
Commit
404e97e
·
1 Parent(s): 86ee626

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -0
app.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from gradio.outputs import Label
2
+ from icevision.all import *
3
+ from icevision.models.checkpoint import *
4
+ import PIL
5
+ import gradio as gr
6
+ import os
7
+
8
+ # Load model
9
+ checkpoint_path = "model_checkpoint.pth"
10
+ checkpoint_and_model = model_from_checkpoint(checkpoint_path)
11
+ model = checkpoint_and_model["model"]
12
+ model_type = checkpoint_and_model["model_type"]
13
+ class_map = checkpoint_and_model["class_map"]
14
+
15
+ # Transforms
16
+ img_size = checkpoint_and_model["img_size"]
17
+ valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(img_size), tfms.A.Normalize()])
18
+
19
+ examples = [['1.jpg'],['2.jpg'],['3.jpg']]
20
+
21
+ def show_preds(input_image):
22
+ img = PIL.Image.fromarray(input_image, "RGB")
23
+ pred_dict = model_type.end2end_detect(img, valid_tfms, model, class_map=class_map, detection_threshold=0.5,
24
+ display_label=False, display_bbox=True, return_img=True,
25
+ font_size=16, label_color="#FF59D6")
26
+
27
+ return pred_dict["img"], len(pred_dict["detection"]["bboxes"])
28
+
29
+
30
+ gr_interface = gr.Interface(
31
+ fn=show_preds,
32
+ inputs=["image"],
33
+ outputs=[gr.outputs.Image(type="pil", label="RetinaNet Inference"), gr.outputs.Textbox(type="number", label="Microalgae Count")],
34
+ title="Microalgae Detector with RetinaNet",
35
+ description="This RetinaNet model counts microalgaes on a given image. Upload an image or click an example image below to use.",
36
+ article="<p style='text-align: center'><a href='https://dicksonneoh.com/portfolio/how_to_deploy_od_models_on_android_with_flutter/' target='_blank'>Blog post</a></p>",
37
+ examples=examples,
38
+ theme="dark-grass",
39
+ enable_queue=True
40
+ )
41
+ gr_interface.launch()