import gradio as gr import pandas as pd import random import plotly.express as px from huggingface_hub import snapshot_download import os import logging from config import ( SETUPS, LOCAL_RESULTS_DIR, CITATION_BUTTON_TEXT, CITATION_BUTTON_LABEL, ) from parsing import read_all_configs, get_common_langs # Set up logging logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", handlers=[ # logging.FileHandler("app.log"), logging.StreamHandler() ], ) logger = logging.getLogger(__name__) try: print("Saving results locally at:", LOCAL_RESULTS_DIR) snapshot_download( repo_id="g8a9/fair-asr-results", local_dir=LOCAL_RESULTS_DIR, repo_type="dataset", tqdm_class=None, etag_timeout=30, ignore_patterns=["*samples*", "*transcripts*"], token=os.environ.get("TOKEN"), ) except Exception as e: raise e def format_dataframe(df, times_100=False): if times_100: df = df.map(lambda x: (f"{x * 100:.3f}%" if isinstance(x, (int, float)) else x)) else: df = df.map(lambda x: (f"{x:.4f}" if isinstance(x, (int, float)) else x)) return df def _build_models_with_nan_md(models_with_nan): model_markups = [f"*{m}*" for m in models_with_nan] return f""" We are currently hiding the results of {', '.join(model_markups)} because they don't support all languages. """ def build_components(show_common_langs): aggregated_df, lang_df, barplot_fig, models_with_nan = _populate_components( show_common_langs ) models_with_nan_md = _build_models_with_nan_md(models_with_nan) return ( gr.DataFrame(format_dataframe(aggregated_df)), gr.DataFrame(format_dataframe(lang_df, times_100=True)), gr.Plot(barplot_fig), gr.Markdown(models_with_nan_md, visible=len(models_with_nan) > 0), ) def _populate_components(show_common_langs): fm = SETUPS[0] setup = fm["majority_group"] + "_" + fm["minority_group"] results = read_all_configs(setup) if show_common_langs: common_langs = get_common_langs() logger.info(f"Common langs: {common_langs}") results = results[results["Language"].isin(common_langs)] missing_langs = ( results[results.isna().any(axis=1)] .groupby("Model")["Language"] .apply(list) .to_dict() ) for model, langs in missing_langs.items(): logger.info( f"Model {model} is missing results for languages: {', '.join(langs)}" ) models_with_nan = results[results.isna().any(axis=1)]["Model"].unique().tolist() logger.info(f"Models with NaN values: {models_with_nan}") results = results[~results["Model"].isin(models_with_nan)] aggregated_df = ( results.pivot_table( index="Model", values="Gap", aggfunc=lambda x: 100 * x.abs().sum() ) .reset_index() .sort_values("Gap") ) best_model = aggregated_df.iloc[0]["Model"] top_3_models = aggregated_df["Model"].head(3).tolist() # main_df = gr.DataFrame(format_dataframe(model_results)) lang_df = results.pivot_table( index="Model", values="Gap", columns="Language", ).reset_index() # lang_df = gr.DataFrame(format_dataframe(lang_results, times_100=True)) # gr.Plot(fig1) results["Gap"] = results["Gap"] * 100 barplot_fig = px.bar( results.loc[results["Model"].isin(top_3_models)], x="Language", y="Gap", color="Model", title="Gaps by Language and Model (top 3, sorted by the best model)", labels={ "Gap": "Sum of Absolute Gaps (%)", "Language": "Language", "Model": "Model", }, barmode="group", ) lang_order = ( lang_df.set_index("Model").loc[best_model].sort_values(ascending=False).index ) logger.info(f"Lang order: {lang_order}") barplot_fig.update_layout( xaxis={"categoryorder": "array", "categoryarray": lang_order} ) return aggregated_df, lang_df, barplot_fig, models_with_nan with gr.Blocks() as fm_interface: aggregated_df, lang_df, barplot_fig, model_with_nan = _populate_components( show_common_langs=False ) model_with_nans_md = gr.Markdown(_build_models_with_nan_md(model_with_nan)) gr.Markdown("### Sum of Absolute Gaps ⬇️") aggregated_df_comp = gr.DataFrame(format_dataframe(aggregated_df)) gr.Markdown("#### F-M gaps by language") lang_df_comp = gr.DataFrame(format_dataframe(lang_df, times_100=True)) barplot_fig_comp = gr.Plot(barplot_fig) ################### # LIST MAIN TABS ################### tabs = [fm_interface] titles = ["F-M Setup"] banner = """
Twists Banner
""" ################### # MAIN INTERFACE ################### with gr.Blocks() as demo: gr.HTML(banner) with gr.Row() as config_row: show_common_langs = gr.CheckboxGroup( choices=["Show only common languages"], label="Main configuration", ) include_datasets = gr.CheckboxGroup( choices=["Mozilla CV 17"], label="Include datasets", value=["Mozilla CV 17"], interactive=False, ) show_common_langs.input( build_components, inputs=[show_common_langs], outputs=[ aggregated_df_comp, lang_df_comp, barplot_fig_comp, model_with_nans_md, ], ) gr.TabbedInterface(tabs, titles) gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, max_lines=6, show_copy_button=True, ) if __name__ == "__main__": demo.launch()