Spaces:
Runtime error
Runtime error
File size: 5,293 Bytes
b0390ea 2893724 b0390ea c2db5d1 b0390ea 7e45f0d b0390ea 2893724 b0390ea a87154e b0390ea 97ba57c 7e45f0d 97ba57c b0390ea 7e45f0d b0390ea 39c3042 b0390ea 39c3042 7e45f0d b0390ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
from ctypes import DEFAULT_MODE
import streamlit as st
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
from ferret import Benchmark
from torch.nn.functional import softmax
from copy import deepcopy
DEFAULT_MODEL = "Hate-speech-CNERG/bert-base-uncased-hatexplain"
DEFAULT_SAMPLES = "3,5,8,13,15,17,18,25,27,28"
@st.cache()
def get_model(model_name):
return AutoModelForSequenceClassification.from_pretrained(model_name)
@st.cache()
def get_config(model_name):
return AutoConfig.from_pretrained(model_name)
def get_tokenizer(tokenizer_name):
return AutoTokenizer.from_pretrained(tokenizer_name, use_fast=True)
def body():
st.title("Evaluate explanations on dataset samples")
st.markdown(
"""
Let's test how our built-in explainers behave on state-of-the-art datasets for explanability.
*ferret* exposes an extensible Dataset API. We currently implement [MovieReviews](https://huggingface.co/datasets/movie_rationales) and [HateXPlain](https://huggingface.co/datasets/hatexplain).
In this demo, you let you experiment with HateXPlain.
You just need to choose a prediction model and a set of samples to test.
We will trigger *ferret* to:
1. download the model;
2. explain every sample you did choose;
3. average all faithfulness and plausibility metrics we support 📊
"""
)
col1, col2 = st.columns([3, 1])
with col1:
model_name = st.text_input("HF Model", DEFAULT_MODEL)
config = AutoConfig.from_pretrained(model_name)
with col2:
class_labels = list(config.id2label.values())
target = st.selectbox(
"Target",
options=class_labels,
index=0,
help="Class label you want to explain.",
)
samples_string = st.text_input(
"List of samples",
DEFAULT_SAMPLES,
help="List of indices in the dataset, comma-separated.",
)
compute = st.button("Run")
samples = list(map(int, samples_string.replace(" ", "").split(",")))
if compute and model_name:
with st.spinner("Preparing the magic. Hang in there..."):
model = get_model(model_name)
tokenizer = get_tokenizer(model_name)
bench = Benchmark(model, tokenizer)
with st.spinner("Explaining sample (this might take a while)..."):
@st.cache(allow_output_mutation=True)
def compute_table(samples):
data = bench.load_dataset("hatexplain")
sample_evaluations = bench.evaluate_samples(
data, samples, target=class_labels.index(target)
)
table = bench.show_samples_evaluation_table(sample_evaluations).format(
"{:.2f}"
)
return table
table = compute_table(samples)
st.markdown("### Averaged metrics")
st.dataframe(table)
st.caption("Darker colors mean better performance.")
# scores = bench.score(text)
# scores_str = ", ".join(
# [f"{config.id2label[l]}: {s:.2f}" for l, s in enumerate(scores)]
# )
# st.text(scores_str)
# with st.spinner("Computing Explanations.."):
# explanations = bench.explain(text, target=class_labels.index(target))
# st.markdown("### Explanations")
# st.dataframe(bench.show_table(explanations))
# st.caption("Darker red (blue) means higher (lower) contribution.")
# with st.spinner("Evaluating Explanations..."):
# evaluations = bench.evaluate_explanations(
# explanations, target=class_labels.index(target), apply_style=False
# )
# st.markdown("### Faithfulness Metrics")
# st.dataframe(bench.show_evaluation_table(evaluations))
# st.caption("Darker colors mean better performance.")
st.markdown(
"""
**Legend**
- **AOPC Comprehensiveness** (aopc_compr) measures *comprehensiveness*, i.e., if the explanation captures all the tokens needed to make the prediction. Higher is better.
- **AOPC Sufficiency** (aopc_suff) measures *sufficiency*, i.e., if the relevant tokens in the explanation are sufficient to make the prediction. Lower is better.
- **Leave-On-Out TAU Correlation** (taucorr_loo) measures the Kendall rank correlation coefficient τ between the explanation and leave-one-out importances. Closer to 1 is better.
See the paper for details.
"""
)
st.markdown(
"""
**In code, it would be as simple as**
"""
)
st.code(
f"""
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from ferret import Benchmark
model = AutoModelForSequenceClassification.from_pretrained("{model_name}")
tokenizer = AutoTokenizer.from_pretrained("{model_name}")
bench = Benchmark(model, tokenizer)
data = bench.load_dataset("hatexplain")
evaluations = bench.evaluate_samples(data, {samples})
bench.show_samples_evaluation_table(evaluations)
""",
language="python",
)
|