Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
from ferret import Benchmark | |
def get_model(model_name): | |
return AutoModelForSequenceClassification.from_pretrained(model_name) | |
def get_tokenizer(tokenizer_name): | |
return AutoTokenizer.from_pretrained(tokenizer_name, use_fast=True) | |
def body(): | |
st.title("Evaluate using *ferret* !") | |
st.markdown( | |
""" | |
### 👋 Hi! | |
Insert down below your text, choose a model and fire up ferret. We will use | |
*ferret* to: | |
1. produce explanations with all supported methods | |
2. evaluate explanations on state-of-the-art **faithfulness metrics**. | |
""" | |
) | |
col1, col2 = st.columns([1, 1]) | |
with col1: | |
model_name = st.text_input("HF Model", "g8a9/bert-base-cased_ami18") | |
with col2: | |
tokenizer_name = st.text_input("HF Tokenizer", "bert-base-cased") | |
text = st.text_input("Text") | |
compute = st.button("Compute") | |
if compute and model_name and tokenizer_name: | |
model = get_model(model_name) | |
tokenizer = get_tokenizer(tokenizer_name) | |
bench = Benchmark(model, tokenizer) | |
explanations = bench.explain(text) | |
st.dataframe(bench.show_table(explanations)) | |