Spaces:
Sleeping
Sleeping
gabehubner
commited on
Commit
•
ec3a146
1
Parent(s):
569299e
add gitignore and training loop class
Browse files- .DS_Store +0 -0
- .gitignore +1 -0
- __pycache__/ddpg.cpython-311.pyc +0 -0
- __pycache__/train.cpython-311.pyc +0 -0
- ddpg.py +9 -6
- main.py +2 -1
- tmp/ddpg/actor_ddpg +0 -0
- tmp/ddpg/critic_ddpg +0 -0
- tmp/ddpg/target_actor_ddpg +0 -0
- tmp/ddpg/target_critic_ddpg +0 -0
- train.py +57 -54
.DS_Store
DELETED
Binary file (8.2 kB)
|
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.DS_Store
|
__pycache__/ddpg.cpython-311.pyc
CHANGED
Binary files a/__pycache__/ddpg.cpython-311.pyc and b/__pycache__/ddpg.cpython-311.pyc differ
|
|
__pycache__/train.cpython-311.pyc
ADDED
Binary file (7.28 kB). View file
|
|
ddpg.py
CHANGED
@@ -176,20 +176,23 @@ class Agent(object):
|
|
176 |
self.target_critic = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions=n_actions, name="target_critic")
|
177 |
|
178 |
self.noise = OUActionNoise(mu=np.zeros(n_actions))
|
|
|
|
|
|
|
179 |
|
180 |
self.update_network_parameters(tau=1)
|
181 |
|
182 |
-
def choose_action(self, observation,
|
183 |
self.actor.eval()
|
184 |
observation = T.tensor(observation, dtype=T.float).to(self.actor.device)
|
185 |
print(f"Observation: {observation.shape=}")
|
186 |
mu = self.actor(observation).to(self.actor.device)
|
187 |
|
188 |
-
if attribution is not None:
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
|
194 |
|
195 |
mu_prime = mu + T.tensor(self.noise(), dtype=T.float).to(self.actor.device)
|
|
|
176 |
self.target_critic = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions=n_actions, name="target_critic")
|
177 |
|
178 |
self.noise = OUActionNoise(mu=np.zeros(n_actions))
|
179 |
+
|
180 |
+
self.attributions = None
|
181 |
+
self.ig = None
|
182 |
|
183 |
self.update_network_parameters(tau=1)
|
184 |
|
185 |
+
def choose_action(self, observation, baseline : T.Tensor=None):
|
186 |
self.actor.eval()
|
187 |
observation = T.tensor(observation, dtype=T.float).to(self.actor.device)
|
188 |
print(f"Observation: {observation.shape=}")
|
189 |
mu = self.actor(observation).to(self.actor.device)
|
190 |
|
191 |
+
# if attribution is not None:
|
192 |
+
# if baseline is None:
|
193 |
+
# baseline = T.zeros(observation.shape)
|
194 |
+
# attributions = attribution.attribute((observation), baselines=baseline, target=0)
|
195 |
+
# print('Attributions:', attributions)
|
196 |
|
197 |
|
198 |
mu_prime = mu + T.tensor(self.noise(), dtype=T.float).to(self.actor.device)
|
main.py
CHANGED
@@ -7,7 +7,8 @@ import argparse
|
|
7 |
from train import TrainingLoop
|
8 |
from captum.attr import (IntegratedGradients, LayerConductance, NeuronAttribution)
|
9 |
|
10 |
-
training_loop = TrainingLoop()
|
|
|
11 |
|
12 |
parser = argparse.ArgumentParser(description="Choose a function to run.")
|
13 |
parser.add_argument("function", choices=["train", "load-trained", "attribute"], help="The function to run.")
|
|
|
7 |
from train import TrainingLoop
|
8 |
from captum.attr import (IntegratedGradients, LayerConductance, NeuronAttribution)
|
9 |
|
10 |
+
training_loop = TrainingLoop(env_spec="LunarLander-v2", continuous=True, gravity=-10, render_mode=None)
|
11 |
+
training_loop.create_agent()
|
12 |
|
13 |
parser = argparse.ArgumentParser(description="Choose a function to run.")
|
14 |
parser.add_argument("function", choices=["train", "load-trained", "attribute"], help="The function to run.")
|
tmp/ddpg/actor_ddpg
CHANGED
Binary files a/tmp/ddpg/actor_ddpg and b/tmp/ddpg/actor_ddpg differ
|
|
tmp/ddpg/critic_ddpg
CHANGED
Binary files a/tmp/ddpg/critic_ddpg and b/tmp/ddpg/critic_ddpg differ
|
|
tmp/ddpg/target_actor_ddpg
CHANGED
Binary files a/tmp/ddpg/target_actor_ddpg and b/tmp/ddpg/target_actor_ddpg differ
|
|
tmp/ddpg/target_critic_ddpg
CHANGED
Binary files a/tmp/ddpg/target_critic_ddpg and b/tmp/ddpg/target_critic_ddpg differ
|
|
train.py
CHANGED
@@ -3,69 +3,75 @@ import gymnasium as gym
|
|
3 |
import numpy as np
|
4 |
import matplotlib.pyplot as plt
|
5 |
import torch
|
6 |
-
import argparse
|
7 |
from captum.attr import (IntegratedGradients)
|
8 |
|
9 |
|
10 |
class TrainingLoop:
|
11 |
-
def __init__(self):
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
continuous = True,
|
18 |
-
gravity = -10.0,
|
19 |
-
render_mode = None
|
20 |
)
|
21 |
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
np.random.seed(0)
|
26 |
score_history = []
|
27 |
|
28 |
for i in range(1000):
|
29 |
done = False
|
30 |
score = 0
|
31 |
-
obs, _ = env.reset()
|
32 |
while not done:
|
33 |
-
act = agent.choose_action(obs)
|
34 |
-
new_state, reward, terminated, truncated, info = env.step(act)
|
35 |
done = terminated or truncated
|
36 |
-
agent.remember(obs, act, reward, new_state, int(done))
|
37 |
-
agent.learn()
|
38 |
score += reward
|
39 |
obs = new_state
|
40 |
|
41 |
score_history.append(score)
|
42 |
print("episode", i, "score %.2f" % score, "100 game average %.2f" % np.mean(score_history[-100:]))
|
43 |
if i % 25 == 0:
|
44 |
-
agent.save_models()
|
|
|
|
|
45 |
|
46 |
|
47 |
def load_trained(self):
|
48 |
-
|
49 |
-
"LunarLanderContinuous-v2",
|
50 |
-
render_mode = "human"
|
51 |
-
)
|
52 |
|
53 |
-
agent
|
54 |
-
agent.load_models()
|
55 |
|
56 |
-
np.random.seed(0)
|
57 |
score_history = []
|
58 |
|
59 |
for i in range(50):
|
60 |
done = False
|
61 |
score = 0
|
62 |
-
obs, _ = env.reset()
|
63 |
|
64 |
-
|
65 |
-
|
66 |
while not done:
|
67 |
-
act = agent.choose_action(obs)
|
68 |
-
new_state, reward, terminated, truncated, info = env.step(act)
|
69 |
done = terminated or truncated
|
70 |
score += reward
|
71 |
obs = new_state
|
@@ -73,42 +79,42 @@ class TrainingLoop:
|
|
73 |
score_history.append(score)
|
74 |
print("episode", i, "score %.2f" % score, "100 game average %.2f" % np.mean(score_history[-100:]))
|
75 |
|
|
|
|
|
76 |
# Model Explainability
|
77 |
|
78 |
from captum.attr import (IntegratedGradients)
|
79 |
|
80 |
def _collect_running_baseline_average(self, num_iterations: int) -> torch.Tensor:
|
81 |
-
|
82 |
-
"LunarLanderContinuous-v2",
|
83 |
-
render_mode = None
|
84 |
-
)
|
85 |
-
|
86 |
-
agent = Agent(alpha=0.000025, beta=0.00025, input_dims=[8], tau=0.001, env=env, batch_size=64, layer1_size=400, layer2_size=300, n_actions=4)
|
87 |
-
agent.load_models()
|
88 |
|
89 |
-
|
90 |
|
91 |
sum_obs = torch.zeros(8)
|
92 |
|
93 |
for i in range(num_iterations):
|
94 |
done = False
|
95 |
score = 0
|
96 |
-
obs, _ = env.reset()
|
97 |
|
98 |
sum_obs += obs
|
99 |
print(f"Baseline on interation #{i}: {obs}")
|
100 |
|
101 |
while not done:
|
102 |
-
act = agent.choose_action(obs, attribution=None, baseline=None)
|
103 |
-
new_state, reward, terminated, truncated, info = env.step(act)
|
104 |
done = terminated or truncated
|
105 |
score += reward
|
106 |
obs = new_state
|
107 |
|
|
|
|
|
108 |
return sum_obs / num_iterations
|
109 |
|
110 |
|
111 |
def explain_trained(self, option: str, num_iterations :int = 10) -> None:
|
|
|
|
|
112 |
baseline_options = {
|
113 |
"1": torch.zeros(8),
|
114 |
"2": self._collect_running_baseline_average(num_iterations),
|
@@ -116,27 +122,20 @@ class TrainingLoop:
|
|
116 |
|
117 |
baseline = baseline_options[option]
|
118 |
|
119 |
-
|
120 |
-
"LunarLanderContinuous-v2",
|
121 |
-
render_mode = "human"
|
122 |
-
)
|
123 |
|
124 |
-
|
|
|
125 |
|
126 |
-
agent.load_models()
|
127 |
-
|
128 |
-
ig = IntegratedGradients(agent.actor)
|
129 |
-
|
130 |
-
np.random.seed(0)
|
131 |
score_history = []
|
132 |
|
133 |
for i in range(50):
|
134 |
done = False
|
135 |
score = 0
|
136 |
-
obs, _ = env.reset()
|
137 |
while not done:
|
138 |
-
act = agent.choose_action(obs,
|
139 |
-
new_state, reward, terminated, truncated, info = env.step(act)
|
140 |
done = terminated or truncated
|
141 |
score += reward
|
142 |
obs = new_state
|
@@ -144,3 +143,7 @@ class TrainingLoop:
|
|
144 |
score_history.append(score)
|
145 |
print("episode", i, "score %.2f" % score, "100 game average %.2f" % np.mean(score_history[-100:]))
|
146 |
|
|
|
|
|
|
|
|
|
|
3 |
import numpy as np
|
4 |
import matplotlib.pyplot as plt
|
5 |
import torch
|
|
|
6 |
from captum.attr import (IntegratedGradients)
|
7 |
|
8 |
|
9 |
class TrainingLoop:
|
10 |
+
def __init__(self, env_spec, output_path='./output/', seed=0, **kwargs):
|
11 |
+
assert env_spec in gym.envs.registry.keys()
|
12 |
+
defaults = {
|
13 |
+
"continuous": True,
|
14 |
+
"gravity": -10.0,
|
15 |
+
"render_mode": None
|
16 |
+
}
|
17 |
|
18 |
+
self.env = gym.make(
|
19 |
+
env_spec,
|
20 |
+
**defaults
|
|
|
|
|
|
|
21 |
)
|
22 |
|
23 |
+
torch.manual_seed(seed)
|
24 |
+
|
25 |
+
self.agent = None
|
26 |
+
self.output_path = output_path
|
27 |
+
|
28 |
+
# TODO: spec-to-hyperparameters look-up
|
29 |
+
def create_agent(self, alpha=0.000025, beta=0.00025, input_dims=[8], tau=0.001, batch_size=64, layer1_size=400, layer2_size=300, n_actions=4):
|
30 |
+
self.agent = Agent(alpha=alpha, beta=beta, input_dims=input_dims, tau=tau, env=self.env, batch_size=batch_size, layer1_size=layer1_size, layer2_size=layer2_size, n_actions=n_actions)
|
31 |
+
|
32 |
+
def train(self):
|
33 |
+
assert self.agent is not None
|
34 |
+
|
35 |
+
self.agent.load_models()
|
36 |
|
|
|
37 |
score_history = []
|
38 |
|
39 |
for i in range(1000):
|
40 |
done = False
|
41 |
score = 0
|
42 |
+
obs, _ = self.env.reset()
|
43 |
while not done:
|
44 |
+
act = self.agent.choose_action(obs)
|
45 |
+
new_state, reward, terminated, truncated, info = self.env.step(act)
|
46 |
done = terminated or truncated
|
47 |
+
self.agent.remember(obs, act, reward, new_state, int(done))
|
48 |
+
self.agent.learn()
|
49 |
score += reward
|
50 |
obs = new_state
|
51 |
|
52 |
score_history.append(score)
|
53 |
print("episode", i, "score %.2f" % score, "100 game average %.2f" % np.mean(score_history[-100:]))
|
54 |
if i % 25 == 0:
|
55 |
+
self.agent.save_models()
|
56 |
+
|
57 |
+
self.env.close()
|
58 |
|
59 |
|
60 |
def load_trained(self):
|
61 |
+
assert self.agent is not None
|
|
|
|
|
|
|
62 |
|
63 |
+
self.agent.load_models()
|
|
|
64 |
|
|
|
65 |
score_history = []
|
66 |
|
67 |
for i in range(50):
|
68 |
done = False
|
69 |
score = 0
|
70 |
+
obs, _ = self.env.reset()
|
71 |
|
|
|
|
|
72 |
while not done:
|
73 |
+
act = self.agent.choose_action(obs)
|
74 |
+
new_state, reward, terminated, truncated, info = self.env.step(act)
|
75 |
done = terminated or truncated
|
76 |
score += reward
|
77 |
obs = new_state
|
|
|
79 |
score_history.append(score)
|
80 |
print("episode", i, "score %.2f" % score, "100 game average %.2f" % np.mean(score_history[-100:]))
|
81 |
|
82 |
+
self.env.close()
|
83 |
+
|
84 |
# Model Explainability
|
85 |
|
86 |
from captum.attr import (IntegratedGradients)
|
87 |
|
88 |
def _collect_running_baseline_average(self, num_iterations: int) -> torch.Tensor:
|
89 |
+
assert self.agent is not None
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
self.agent.load_models()
|
92 |
|
93 |
sum_obs = torch.zeros(8)
|
94 |
|
95 |
for i in range(num_iterations):
|
96 |
done = False
|
97 |
score = 0
|
98 |
+
obs, _ = self.env.reset()
|
99 |
|
100 |
sum_obs += obs
|
101 |
print(f"Baseline on interation #{i}: {obs}")
|
102 |
|
103 |
while not done:
|
104 |
+
act = self.agent.choose_action(obs, attribution=None, baseline=None)
|
105 |
+
new_state, reward, terminated, truncated, info = self.env.step(act)
|
106 |
done = terminated or truncated
|
107 |
score += reward
|
108 |
obs = new_state
|
109 |
|
110 |
+
self.env.close()
|
111 |
+
|
112 |
return sum_obs / num_iterations
|
113 |
|
114 |
|
115 |
def explain_trained(self, option: str, num_iterations :int = 10) -> None:
|
116 |
+
assert self.agent is not None
|
117 |
+
|
118 |
baseline_options = {
|
119 |
"1": torch.zeros(8),
|
120 |
"2": self._collect_running_baseline_average(num_iterations),
|
|
|
122 |
|
123 |
baseline = baseline_options[option]
|
124 |
|
125 |
+
self.agent.load_models()
|
|
|
|
|
|
|
126 |
|
127 |
+
ig = IntegratedGradients(self.agent.actor)
|
128 |
+
self.agent.ig = ig
|
129 |
|
|
|
|
|
|
|
|
|
|
|
130 |
score_history = []
|
131 |
|
132 |
for i in range(50):
|
133 |
done = False
|
134 |
score = 0
|
135 |
+
obs, _ = self.env.reset()
|
136 |
while not done:
|
137 |
+
act = self.agent.choose_action(obs, baseline=baseline)
|
138 |
+
new_state, reward, terminated, truncated, info = self.env.step(act)
|
139 |
done = terminated or truncated
|
140 |
score += reward
|
141 |
obs = new_state
|
|
|
143 |
score_history.append(score)
|
144 |
print("episode", i, "score %.2f" % score, "100 game average %.2f" % np.mean(score_history[-100:]))
|
145 |
|
146 |
+
self.env.close()
|
147 |
+
|
148 |
+
return self.agent.attributions
|
149 |
+
|