Spaces:
Running
on
T4
Running
on
T4
File size: 6,935 Bytes
9c20b4e 8bf1635 2e2148b 8bf1635 74e9bb4 8bf1635 ab25593 5c2ba64 9c20b4e a9922ff ab25593 5c2ba64 672cb3f 9c20b4e 5e89640 9c20b4e ab25593 7c1ccb2 dc06293 f17c34f dc06293 f17c34f 8fa13bc dc06293 d5e153f dc06293 2cf7afe ab25593 dc06293 ab25593 dc06293 f17c34f ab25593 dc06293 ab25593 dc06293 ab25593 f17c34f 9db5d78 ab25593 f17c34f ab25593 9db5d78 ab25593 9db5d78 ab25593 dc06293 ab25593 5c2ba64 9c20b4e f17c34f ab25593 9c20b4e 8729c75 9c20b4e dc06293 9c20b4e fb76d6c 9c20b4e f136260 ccb0b90 da7d0fa 9c20b4e ffbd52c ab25593 7c1ccb2 b9d657b 7c1ccb2 b9d657b 9c20b4e 112bea7 ab25593 f17c34f 9c20b4e 5c2ba64 9c20b4e 5c2ba64 9c20b4e ab25593 1a8723f 9c20b4e 1a8723f ab25593 1a8723f 9c20b4e 1a8723f 5c2ba64 74e9bb4 5c2ba64 ab25593 9c20b4e 5c2ba64 672cb3f ab25593 dc06293 ab25593 2e2148b ab25593 f17c34f ab25593 9db5d78 f17c34f ab25593 9db5d78 dc06293 ab25593 dc06293 8fa13bc ab25593 5c2ba64 ab25593 5c2ba64 ab25593 44f832c ab25593 3b75e3f 5c2ba64 5e89640 44f832c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
"""
main.py
"""
# Standard library imports
import glob
import os
import time
from pathlib import Path
from tempfile import NamedTemporaryFile
from typing import List, Tuple, Optional
# Third-party imports
import gradio as gr
import random
from loguru import logger
from pypdf import PdfReader
from pydub import AudioSegment
# Local imports
from constants import (
APP_TITLE,
CHARACTER_LIMIT,
ERROR_MESSAGE_NOT_PDF,
ERROR_MESSAGE_NO_INPUT,
ERROR_MESSAGE_NOT_SUPPORTED_IN_MELO_TTS,
ERROR_MESSAGE_READING_PDF,
ERROR_MESSAGE_TOO_LONG,
GRADIO_CACHE_DIR,
GRADIO_CLEAR_CACHE_OLDER_THAN,
MELO_TTS_LANGUAGE_MAPPING,
NOT_SUPPORTED_IN_MELO_TTS,
SUNO_LANGUAGE_MAPPING,
UI_ALLOW_FLAGGING,
UI_API_NAME,
UI_CACHE_EXAMPLES,
UI_CONCURRENCY_LIMIT,
UI_DESCRIPTION,
UI_EXAMPLES,
UI_INPUTS,
UI_OUTPUTS,
UI_SHOW_API,
)
from prompts import (
LANGUAGE_MODIFIER,
LENGTH_MODIFIERS,
QUESTION_MODIFIER,
SYSTEM_PROMPT,
TONE_MODIFIER,
)
from schema import ShortDialogue, MediumDialogue
from utils import generate_podcast_audio, generate_script, parse_url
def generate_podcast(
files: List[str],
url: Optional[str],
question: Optional[str],
tone: Optional[str],
length: Optional[str],
language: str,
use_advanced_audio: bool,
) -> Tuple[str, str]:
"""Generate the audio and transcript from the PDFs and/or URL."""
text = ""
# Choose random number from 0 to 8
random_voice_number = random.randint(0, 8) # this is for suno model
if not use_advanced_audio and language in NOT_SUPPORTED_IN_MELO_TTS:
raise gr.Error(ERROR_MESSAGE_NOT_SUPPORTED_IN_MELO_TTS)
# Check if at least one input is provided
if not files and not url:
raise gr.Error(ERROR_MESSAGE_NO_INPUT)
# Process PDFs if any
if files:
for file in files:
if not file.lower().endswith(".pdf"):
raise gr.Error(ERROR_MESSAGE_NOT_PDF)
try:
with Path(file).open("rb") as f:
reader = PdfReader(f)
text += "\n\n".join([page.extract_text() for page in reader.pages])
except Exception as e:
raise gr.Error(f"{ERROR_MESSAGE_READING_PDF}: {str(e)}")
# Process URL if provided
if url:
try:
url_text = parse_url(url)
text += "\n\n" + url_text
except ValueError as e:
raise gr.Error(str(e))
# Check total character count
if len(text) > CHARACTER_LIMIT:
raise gr.Error(ERROR_MESSAGE_TOO_LONG)
# Modify the system prompt based on the user input
modified_system_prompt = SYSTEM_PROMPT
if question:
modified_system_prompt += f"\n\n{QUESTION_MODIFIER} {question}"
if tone:
modified_system_prompt += f"\n\n{TONE_MODIFIER} {tone}."
if length:
modified_system_prompt += f"\n\n{LENGTH_MODIFIERS[length]}"
if language:
modified_system_prompt += f"\n\n{LANGUAGE_MODIFIER} {language}."
# Call the LLM
if length == "Short (1-2 min)":
llm_output = generate_script(modified_system_prompt, text, ShortDialogue)
else:
llm_output = generate_script(modified_system_prompt, text, MediumDialogue)
logger.info(f"Generated dialogue: {llm_output}")
# Process the dialogue
audio_segments = []
transcript = ""
total_characters = 0
for line in llm_output.dialogue:
logger.info(f"Generating audio for {line.speaker}: {line.text}")
if line.speaker == "Host (Jane)":
speaker = f"**Host**: {line.text}"
else:
speaker = f"**{llm_output.name_of_guest}**: {line.text}"
transcript += speaker + "\n\n"
total_characters += len(line.text)
language_for_tts = SUNO_LANGUAGE_MAPPING[language]
if not use_advanced_audio:
language_for_tts = MELO_TTS_LANGUAGE_MAPPING[language_for_tts]
# Get audio file path
audio_file_path = generate_podcast_audio(
line.text, line.speaker, language_for_tts, use_advanced_audio, random_voice_number
)
# Read the audio file into an AudioSegment
audio_segment = AudioSegment.from_file(audio_file_path)
audio_segments.append(audio_segment)
# Concatenate all audio segments
combined_audio = sum(audio_segments)
# Export the combined audio to a temporary file
temporary_directory = GRADIO_CACHE_DIR
os.makedirs(temporary_directory, exist_ok=True)
temporary_file = NamedTemporaryFile(
dir=temporary_directory,
delete=False,
suffix=".mp3",
)
combined_audio.export(temporary_file.name, format="mp3")
# Delete any files in the temp directory that end with .mp3 and are over a day old
for file in glob.glob(f"{temporary_directory}*.mp3"):
if (
os.path.isfile(file)
and time.time() - os.path.getmtime(file) > GRADIO_CLEAR_CACHE_OLDER_THAN
):
os.remove(file)
logger.info(f"Generated {total_characters} characters of audio")
return temporary_file.name, transcript
demo = gr.Interface(
title=APP_TITLE,
description=UI_DESCRIPTION,
fn=generate_podcast,
inputs=[
gr.File(
label=UI_INPUTS["file_upload"]["label"], # Step 1: File upload
file_types=UI_INPUTS["file_upload"]["file_types"],
file_count=UI_INPUTS["file_upload"]["file_count"],
),
gr.Textbox(
label=UI_INPUTS["url"]["label"], # Step 2: URL
placeholder=UI_INPUTS["url"]["placeholder"],
),
gr.Textbox(label=UI_INPUTS["question"]["label"]), # Step 3: Question
gr.Dropdown(
label=UI_INPUTS["tone"]["label"], # Step 4: Tone
choices=UI_INPUTS["tone"]["choices"],
value=UI_INPUTS["tone"]["value"],
),
gr.Dropdown(
label=UI_INPUTS["length"]["label"], # Step 5: Length
choices=UI_INPUTS["length"]["choices"],
value=UI_INPUTS["length"]["value"],
),
gr.Dropdown(
choices=UI_INPUTS["language"]["choices"], # Step 6: Language
value=UI_INPUTS["language"]["value"],
label=UI_INPUTS["language"]["label"],
),
gr.Checkbox(
label=UI_INPUTS["advanced_audio"]["label"],
value=UI_INPUTS["advanced_audio"]["value"],
),
],
outputs=[
gr.Audio(
label=UI_OUTPUTS["audio"]["label"], format=UI_OUTPUTS["audio"]["format"]
),
gr.Markdown(label=UI_OUTPUTS["transcript"]["label"]),
],
allow_flagging=UI_ALLOW_FLAGGING,
api_name=UI_API_NAME,
theme=gr.themes.Ocean(),
concurrency_limit=UI_CONCURRENCY_LIMIT,
examples=UI_EXAMPLES,
cache_examples=UI_CACHE_EXAMPLES,
)
if __name__ == "__main__":
demo.launch(show_api=UI_SHOW_API) |