""" main.py """ # Standard library imports import glob import os import time from pathlib import Path from tempfile import NamedTemporaryFile from typing import List, Literal, Tuple, Optional # Third-party imports import gradio as gr from loguru import logger from pydantic import BaseModel from pypdf import PdfReader from pydub import AudioSegment # Local imports from prompts import SYSTEM_PROMPT from utils import generate_script, generate_audio class DialogueItem(BaseModel): """A single dialogue item.""" speaker: Literal["Host (Jane)", "Guest"] text: str class Dialogue(BaseModel): """The dialogue between the host and guest.""" scratchpad: str name_of_guest: str dialogue: List[DialogueItem] def generate_podcast(file: str, tone: Optional[str] = None, length: Optional[str] = None) -> Tuple[str, str]: """Generate the audio and transcript from the PDF.""" # Check if the file is a PDF if not file.lower().endswith('.pdf'): raise gr.Error("Please upload a PDF file.") # Read the PDF file and extract text try: with Path(file).open("rb") as f: reader = PdfReader(f) text = "\n\n".join([page.extract_text() for page in reader.pages]) except Exception as e: raise gr.Error(f"Error reading the PDF file: {str(e)}") # Check if the PDF has more than ~150,000 characters if len(text) > 100000: raise gr.Error("The PDF is too long. Please upload a PDF with fewer than ~100,000 characters.") # Modify the system prompt based on the chosen tone and length modified_system_prompt = SYSTEM_PROMPT if tone: modified_system_prompt += f"\n\nTONE: The tone of the podcast should be {tone}." if length: length_instructions = { "Short (1-2 min)": "Keep the podcast brief, around 1-2 minutes long.", "Medium (3-5 min)": "Aim for a moderate length, about 3-5 minutes.", } modified_system_prompt += f"\n\nLENGTH: {length_instructions[length]}" # Call the LLM llm_output = generate_script(modified_system_prompt, text, Dialogue) logger.info(f"Generated dialogue: {llm_output}") # Process the dialogue audio_segments = [] transcript = "" # start with an empty transcript total_characters = 0 for line in llm_output.dialogue: logger.info(f"Generating audio for {line.speaker}: {line.text}") if line.speaker == "Host (Jane)": speaker = f"**Jane**: {line.text}" else: speaker = f"**{llm_output.name_of_guest}**: {line.text}" transcript += speaker + "\n\n" total_characters += len(line.text) # Get audio file path audio_file_path = generate_audio(line.text, line.speaker) # Read the audio file into an AudioSegment audio_segment = AudioSegment.from_file(audio_file_path) audio_segments.append(audio_segment) # Concatenate all audio segments combined_audio = sum(audio_segments) # Export the combined audio to a temporary file temporary_directory = "./gradio_cached_examples/tmp/" os.makedirs(temporary_directory, exist_ok=True) temporary_file = NamedTemporaryFile( dir=temporary_directory, delete=False, suffix=".mp3", ) combined_audio.export(temporary_file.name, format="mp3") # Delete any files in the temp directory that end with .mp3 and are over a day old for file in glob.glob(f"{temporary_directory}*.mp3"): if os.path.isfile(file) and time.time() - os.path.getmtime(file) > 24 * 60 * 60: os.remove(file) logger.info(f"Generated {total_characters} characters of audio") return temporary_file.name, transcript demo = gr.Interface( title="Open NotebookLM", description="Convert your PDFs into podcasts with open-source AI models (Llama 3.1 405B and MeloTTS).", fn=generate_podcast, inputs=[ gr.File( label="PDF", file_types=[".pdf", "file/*"], ), gr.Radio( choices=["Fun", "Formal"], label="Tone of the podcast", value="casual" ), gr.Radio( choices=["Short (1-2 min)", "Medium (3-5 min)"], label="Length of the podcast", value="Medium (3-5 min)" ), ], outputs=[ gr.Audio(label="Audio", format="mp3"), gr.Markdown(label="Transcript"), ], allow_flagging="never", api_name=False, theme=gr.themes.Soft() ) if __name__ == "__main__": demo.launch()