gadkins commited on
Commit
9abbe21
·
1 Parent(s): 83e7855
Files changed (6) hide show
  1. .gitignore +8 -0
  2. Dockerfile +11 -0
  3. main.py +17 -0
  4. request.py +27 -0
  5. requirements.txt +5 -0
  6. utils.py +47 -0
.gitignore ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ api_calls/.env
2
+ api_calls/apiEnv
3
+ .env
4
+ *env
5
+ *venv
6
+ __pycache__/
7
+ *pdfChatEnv
8
+ *checkpoint.ipynb
Dockerfile ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9
2
+
3
+ WORKDIR /code
4
+
5
+ COPY ./requirements.txt /code/requirements.txt
6
+
7
+ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
8
+
9
+ COPY . .
10
+
11
+ CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
main.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI
2
+ from pydantic import BaseModel
3
+ from utils import chat_completion_request
4
+
5
+ app = FastAPI()
6
+
7
+ class ChatRequest(BaseModel):
8
+ input_str: str
9
+
10
+ @app.get("/")
11
+ async def root():
12
+ return {"message": "PDF Chatbot API"}
13
+
14
+ @app.post("/chat")
15
+ async def submit_query(request: ChatRequest):
16
+ chat_response = chat_completion_request(request.input_str)
17
+ return {"role": "assistant", "content": chat_response}
request.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ import json
3
+
4
+ url = 'http://127.0.0.1:8000/generate'
5
+ headers = {
6
+ 'accept': 'application/json',
7
+ 'Content-Type': 'application/json',
8
+ }
9
+ data = {
10
+ "name": "Laptop",
11
+ "notes": "4GB RAM, 256 GB Disk"
12
+ }
13
+
14
+ response = requests.post(url, headers=headers, data=json.dumps(data))
15
+
16
+ print(response.json())
17
+ # Check the status code of the response
18
+ # if response.status_code == 200:
19
+ # try:
20
+ # print(response.json())
21
+ # except json.decoder.JSONDecodeError:
22
+ # print("Response is not in JSON format.")
23
+ # else:
24
+ # print(f"Error: Received status code {response.status_code}")
25
+ # print("Response text:", response.text)
26
+
27
+
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ openai
2
+ fastapi
3
+ uvicorn
4
+ requests
5
+ python-dotenv
utils.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from openai import OpenAI
2
+ import os
3
+ import time
4
+ from dotenv import dotenv_values
5
+
6
+ # Load model and API endpoint from environment variables
7
+ config = dotenv_values(".env")
8
+ model = config.get("MODEL")
9
+ api_endpoint = config.get("API_ENDPOINT")
10
+
11
+ openai_api_base = api_endpoint + '/v1'
12
+
13
+ # Initialize the OpenAI client
14
+ client = OpenAI(
15
+ api_key="EMPTY", # Replace with your actual API key if required
16
+ base_url=openai_api_base,
17
+ )
18
+
19
+ def chat_completion_request(input):
20
+
21
+ messages = [
22
+ {"role": "user", "content": f"{input}"},
23
+ ]
24
+ # Create chat completions using the OpenAI client
25
+ chat_response = client.chat.completions.create(
26
+ model=model,
27
+ messages=messages,
28
+ temperature=0,
29
+ max_tokens=500
30
+ )
31
+
32
+ # Extract the completion text from the response
33
+ if chat_response.choices:
34
+ completion_text = chat_response.choices[0].message.content
35
+ else:
36
+ completion_text = None
37
+
38
+ return completion_text
39
+
40
+
41
+ # # Test the function
42
+ # messages = [
43
+ # {"role": "user", "content": "Write a long essay on the topic of spring."}
44
+ # ]
45
+
46
+ # chat_response = chat_completion_request_openai(messages, client)
47
+ # messages.append({"role": "assistant", "content": chat_response})