Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 7,160 Bytes
db7f350 3d87820 db7f350 3d87820 db7f350 3d87820 d5f51f9 db7f350 741edbf db7f350 47c3ae2 741edbf 47c3ae2 db7f350 741edbf 3d87820 741edbf db7f350 3d87820 741edbf 3d87820 db7f350 47c3ae2 db7f350 3d87820 db7f350 741edbf db7f350 3d87820 db7f350 3d87820 db7f350 741edbf 3d87820 741edbf 3d87820 741edbf 3d87820 741edbf 3d87820 741edbf 3d87820 741edbf 3d87820 741edbf 3d87820 741edbf 3d87820 db7f350 741edbf db7f350 741edbf db7f350 3d87820 db7f350 741edbf db7f350 3d87820 db7f350 3d87820 db7f350 5d94f6d db7f350 741edbf 3d87820 741edbf 3d87820 db7f350 741edbf db7f350 8ce97f8 741edbf 8ce97f8 3d87820 8ce97f8 db7f350 3d87820 db7f350 3d87820 db7f350 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import os
import json
import datetime
from email.utils import parseaddr
import gradio as gr
import pandas as pd
import numpy as np
from datasets import load_dataset
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
# InfoStrings
from scorer import question_scorer
from content import format_warning, format_log, TITLE, INTRODUCTION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
BALM_TOKEN = os.environ.get("WTOKEN", None)
OWNER="gaia-benchmark"
DATA_DATASET = f"{OWNER}/GAIA"
INTERNAL_DATA_DATASET = f"{OWNER}/GAIA_internal"
SUBMISSION_DATASET = f"{OWNER}/submissions_internal"
RESULTS_DATASET = f"{OWNER}/results"
LEADERBOARD_PATH = f"{OWNER}/leaderboard"
api = HfApi()
YEAR_VERSION = "2023"
os.makedirs("scored", exist_ok=True)
# Display the results
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, use_auth_token=BALM_TOKEN)
eval_dataframe_val = pd.DataFrame(eval_results["validation"].remove_columns("mail"))
eval_dataframe_test = pd.DataFrame(eval_results["test"].remove_columns("mail"))
# Gold answers
gold_results = {}
gold_dataset = load_dataset(INTERNAL_DATA_DATASET, f"{YEAR_VERSION}_all", use_auth_token=BALM_TOKEN)
gold_results = {split: {row["task_id"]: row for row in gold_dataset[split]} for split in ["test", "validation"]}
def restart_space():
api.restart_space(repo_id=LEADERBOARD_PATH, token=BALM_TOKEN)
COLS = ["Model", "Score ⬆️", "Organisation"]
TYPES = ["str", "number", "str",]
def add_new_eval(
val_or_test: str,
model: str,
path_to_file,
organisation: str,
mail: str,
):
# Very basic email parsing
_, parsed_mail = parseaddr(mail)
if not "@" in parsed_mail:
return format_warning("Please provide a valid email adress.")
print("Adding new eval")
# Check if the combination model/org already exists and prints a warning message if yes
if model.lower() in set(eval_results[val_or_test]["model"]) and organisation.lower() in set(eval_results[val_or_test]["organisation"]):
return format_warning("This model has been already submitted.")
if path_to_file is None:
return format_warning("Please attach a file.")
# Save submitted file
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=path_to_file.name,
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_raw_{datetime.datetime.today()}.jsonl",
repo_type="dataset",
token=BALM_TOKEN
)
# Compute score
file_path = path_to_file.name
scores = {"all": 0, 1: 0, 2: 0, 3: 0}
num_questions = {"all": 0, 1: 0, 2: 0, 3: 0}
with open(f"scored/{organisation}_{model}.jsonl", "w") as scored_file:
with open(file_path, 'r') as f:
for line in f:
task = json.loads(line)
if "model_answer" not in task:
raise Exception("No model_answer key in the file provided")
answer = task["model_answer"]
task_id = task["task_id"]
level = int(gold_results[val_or_test][task_id]["Level"])
score = question_scorer(task['model_answer'], gold_results[val_or_test][task_id]["Final answer"])
scored_file.write(
json.dumps({
"id": task_id,
"model_answer": answer,
"score": score,
"level": level
}) + "\n"
)
scores["all"] += score
scores[level] += score
num_questions["all"] += 1
num_questions[level] += 1
# Save scored file
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=f"scored/{organisation}_{model}.jsonl",
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_scored_{datetime.datetime.today()}.jsonl",
repo_type="dataset",
token=BALM_TOKEN
)
# Actual submission
eval_entry = {
"model": model,
"organisation": organisation,
"mail": mail,
"score": scores["all"]/num_questions["all"],
"score_level1": scores[1]/num_questions[1],
"score_level2": scores[2]/num_questions[2],
"score_level3": scores[3]/num_questions[3],
}
eval_results[val_or_test] = eval_results[val_or_test].add_item(eval_entry)
print(eval_results)
eval_results.push_to_hub(RESULTS_DATASET, config_name = YEAR_VERSION, token=BALM_TOKEN)
return format_log(f"Model {model} submitted by {organisation} successfully. \nPlease refresh the leaderboard, and wait for up to an hour to see the score displayed")
def refresh():
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, use_auth_token=BALM_TOKEN, download_mode="force_redownload")
eval_dataframe_val = pd.DataFrame(eval_results["validation"].remove_columns("mail"))
eval_dataframe_test = pd.DataFrame(eval_results["test"].remove_columns("mail"))
return eval_dataframe_val, eval_dataframe_test
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
demo = gr.Blocks()
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
with gr.Tab("Results: Validation"):
leaderboard_table_val = gr.components.Dataframe(
value=eval_dataframe_val, headers=COLS, datatype=TYPES, interactive=False,
)
with gr.Tab("Results: Test"):
leaderboard_table_test = gr.components.Dataframe(
value=eval_dataframe_test, headers=COLS, datatype=TYPES, interactive=False,
)
refresh_button = gr.Button("Refresh")
refresh_button.click(
refresh,
inputs=[],
outputs=[
leaderboard_table_val,
leaderboard_table_test,
],
)
with gr.Accordion("Submit a new model for evaluation"):
with gr.Row():
with gr.Column():
level_of_test = gr.Radio(["validation", "test"], value="validation", label="Split")
model_name_textbox = gr.Textbox(label="Model name")
file_output = gr.File()
with gr.Column():
organisation = gr.Textbox(label="Organisation")
mail = gr.Textbox(label="Contact email")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
level_of_test,
model_name_textbox,
file_output,
organisation,
mail
],
submission_result,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.launch()
|