File size: 2,370 Bytes
3d87820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import json
import re
import string

import numpy as np

def normalize_text(text: str) -> str:
    "From QuAC"
    def remove_articles(text: str) -> str:
        return re.sub(r"\b(a|an|the)\b", " ", text)

    def white_space_fix(text: str) -> str:
        return " ".join(text.split())

    def homogeneize_numbers(text: str) -> str:
        try:
            return str(float(text))
        except ValueError:
            return text

    def remove_punc(text: str) -> str:
        exclude = set(string.punctuation)
        return "".join(ch for ch in text if ch not in exclude)
    
    def remove_punc2(text: str) -> str:
        "From Grégoire's code, removes all punctuation, nicer than remove_punc"
        translator = str.maketrans('', '', string.punctuation)
        return text.translate(translator)

    def lower(text: str) -> str:
        return text.lower()

    def _tokenize(text):
        return re.split(" ", text)

    tokens = [white_space_fix(remove_articles(homogeneize_numbers(remove_punc2(lower(t))))) for t in _tokenize(text)]
    return " ".join([t for t in tokens if t != ""]).strip()

def extract_answer(input_str: str, prompt_sep: str = 'FINAL ANSWER: ') -> str:
    answer = input_str.split(prompt_sep)[-1].strip()
    return answer

def extract_bow(input_str: str) -> list[str]:
    return input_str.split(" ")

def numbers_equals_in_bow(gold_list: list, pred_list: list) -> bool:
    # Numbers in prediction bag of words
    pred_numbers = []
    for text in pred_list:
        try:
            pred_numbers.append(str(float(text)))
        except ValueError:
            continue

    for text in gold_list:
        try:
            number = str(float(text))
            if number not in pred_numbers:
                return False
        except ValueError:
            continue

    return True

def affix_quasi_exact_match(gold: str, pred: str) -> float:
    if not pred:
        return 0

    normalized_pred = normalize_text(pred)
    normalized_gold = normalize_text(gold)
    bow_pred = extract_bow(pred)
    bow_gold = extract_bow(gold)

    if normalized_pred.startswith(normalized_gold) or normalized_pred.endswith(normalized_gold):
        if numbers_equals_in_bow(bow_gold, bow_pred):
            return 1
    
    return 0

def question_scorer(gold: str, pred: str) -> float:
    return affix_quasi_exact_match(gold, pred)