Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 42,561 Bytes
10ad72f b0ce6f5 4a46abc 10ad72f cfec1f3 10ad72f 4a46abc b8ddec2 80c01c6 4a46abc b8ddec2 4a46abc b8ddec2 4a46abc b8ddec2 4a46abc b8ddec2 4a46abc b8ddec2 4a46abc b8ddec2 4a46abc b8ddec2 4a46abc 80c01c6 d79b50f 523927e 4a46abc b8ddec2 4a46abc b8ddec2 4a46abc 523927e 4a46abc 523927e 4a46abc e2809a3 4a46abc b8ddec2 c8ff2be b8ddec2 b9405c8 b8ddec2 ba77db2 b8ddec2 a6c4f7b b8ddec2 df66c39 b8ddec2 df66c39 b8ddec2 df66c39 b8ddec2 3aeb75b b8ddec2 ef63014 b8ddec2 ef63014 b8ddec2 b9405c8 b8ddec2 91da2cc b8ddec2 b9405c8 b8ddec2 b9405c8 b8ddec2 ae900da b9405c8 ae900da b9405c8 ae900da b9405c8 ae900da ef63014 ae900da ef63014 ae900da b9405c8 ae900da b9405c8 ae900da b8ddec2 b9405c8 712db9d b9405c8 712db9d b9405c8 712db9d b9405c8 712db9d b9405c8 b8ddec2 b9405c8 91da2cc b9405c8 91da2cc b8ddec2 91da2cc b8ddec2 91da2cc b8ddec2 91da2cc b8ddec2 b9405c8 b8ddec2 91da2cc b8ddec2 91da2cc b8ddec2 91da2cc b8ddec2 91da2cc b8ddec2 91da2cc b8ddec2 b9405c8 b8ddec2 b9405c8 b8ddec2 b9405c8 b8ddec2 ef63014 b8ddec2 ae900da b9405c8 b8ddec2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 |
import pandas as pd
DATASETS = [
"BFCL_v3_irrelevance",
"BFCL_v3_multi_turn_base_multi_func_call",
"BFCL_v3_multi_turn_base_single_func_call",
"BFCL_v3_multi_turn_composite",
"BFCL_v3_multi_turn_long_context",
"BFCL_v3_multi_turn_miss_func",
"BFCL_v3_multi_turn_miss_param",
"tau_long_context",
"toolace_single_func_call_1",
"toolace_single_func_call_2",
"xlam_multiple_tool_multiple_call",
"xlam_multiple_tool_single_call",
"xlam_single_tool_multiple_call",
"xlam_single_tool_single_call",
"xlam_tool_miss",
]
SCORES = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
def load_data():
"""Load and preprocess the data."""
df = pd.read_csv("results.csv").dropna()
# Add combined I/O cost column with 3:1 ratio
df["IO Cost"] = (
df["Input cost per million token"] * 0.75
+ df["Output cost per million token"] * 0.25
)
return df
df = load_data()
MODELS = [x.strip() for x in df["Model"].unique().tolist()]
# categories.py
CATEGORIES = {
"Overall": ["Model Avg"],
"Overall single turn": ["single turn perf"],
"Overall multi turn": ["multi turn perf"],
"Single func call": [
"xlam_single_tool_single_call",
"xlam_multiple_tool_single_call",
],
"Multiple func call": [
"xlam_multiple_tool_multiple_call",
"xlam_single_tool_multiple_call",
"BFCL_v3_multi_turn_base_multi_func_call",
],
"Irrelevant query": ["BFCL_v3_irrelevance"],
"Long context": ["tau_long_context", "BFCL_v3_multi_turn_long_context"],
"Missing func": ["xlam_tool_miss", "BFCL_v3_multi_turn_miss_func"],
"Missing params": ["BFCL_v3_multi_turn_miss_param"],
"Composite": ["BFCL_v3_multi_turn_composite"],
}
chat_css = """
/* Container styles */
.container {
display: flex;
gap: 1.5rem;
height: calc(100vh - 100px);
padding: 1rem;
}
/* Chat panel styles */
.chat-panel {
flex: 2;
background: #1a1f2c;
border-radius: 1rem;
padding: 1rem;
overflow-y: auto;
max-height: calc(100vh - 120px);
}
/* Message styles */
.message {
padding: 1.2rem;
margin: 0.8rem;
border-radius: 1rem;
font-family: monospace;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
}
.system {
background: linear-gradient(135deg, #8e44ad, #9b59b6);
}
.user {
background: linear-gradient(135deg, #2c3e50, #3498db);
margin-left: 2rem;
}
.assistant {
background: linear-gradient(135deg, #27ae60, #2ecc71);
margin-right: 2rem;
}
.role-badge {
display: inline-block;
padding: 0.3rem 0.8rem;
border-radius: 0.5rem;
font-weight: bold;
margin-bottom: 0.8rem;
font-size: 0.9rem;
text-transform: uppercase;
letter-spacing: 0.05em;
}
.system-role {
background-color: #8e44ad;
color: white;
}
.user-role {
background-color: #3498db;
color: white;
}
.assistant-role {
background-color: #27ae60;
color: white;
}
.content {
white-space: pre-wrap;
word-break: break-word;
color: #f5f6fa;
line-height: 1.5;
}
/* Metrics panel styles */
.metrics-panel {
flex: 1;
display: flex;
flex-direction: column;
gap: 2rem;
padding: 1.5rem;
background: #1a1f2c;
border-radius: 1rem;
}
.metric-section {
background: #1E293B;
padding: 1.5rem;
border-radius: 1rem;
}
.score-section {
text-align: center;
}
.score-display {
font-size: 3rem;
font-weight: bold;
color: #4ADE80;
line-height: 1;
margin: 0.5rem 0;
}
.explanation-text {
color: #E2E8F0;
line-height: 1.6;
font-size: 0.95rem;
}
/* Tool info panel styles */
.tool-info-panel {
background: #1a1f2c;
padding: 1.5rem;
border-radius: 1rem;
color: #f5f6fa;
}
.tool-section {
margin-bottom: 1.5rem;
}
.tool-name {
font-size: 1.2rem;
color: #4ADE80;
font-weight: bold;
margin-bottom: 0.5rem;
}
.tool-description {
color: #E2E8F0;
line-height: 1.6;
margin-bottom: 1rem;
}
.tool-parameters .parameter {
margin: 0.5rem 0;
padding: 0.5rem;
background: rgba(255, 255, 255, 0.05);
border-radius: 0.5rem;
}
.param-name {
color: #63B3ED;
font-weight: bold;
margin-right: 0.5rem;
}
.tool-examples .example {
margin: 0.5rem 0;
padding: 0.5rem;
background: rgba(255, 255, 255, 0.05);
border-radius: 0.5rem;
font-family: monospace;
}
/* Custom scrollbar */
::-webkit-scrollbar {
width: 8px;
}
::-webkit-scrollbar-track {
background: rgba(255, 255, 255, 0.1);
border-radius: 4px;
}
::-webkit-scrollbar-thumb {
background: linear-gradient(45deg, #3498db, #2ecc71);
border-radius: 4px;
}
/* Title styles */
.title {
color: #63B3ED;
font-size: 2rem;
font-weight: bold;
text-align: center;
margin-bottom: 1.5rem;
padding: 1rem;
}
/* Headers */
h3 {
color: #63B3ED;
margin: 0 0 1rem 0;
font-size: 1.1rem;
font-weight: 500;
letter-spacing: 0.05em;
}
"""
COMMON = """
<style>
@media (prefers-color-scheme: dark) {
:root {
--bg-primary: #0B0B19;
--bg-secondary: rgba(19, 19, 37, 0.4);
--bg-hover: rgba(30, 30, 45, 0.95);
--text-primary: #ffffff;
--text-secondary: #e2e8f0;
--text-tertiary: #e2e8f0;
--border-color: rgba(31, 41, 55, 0.5);
--border-hover: rgba(79, 70, 229, 0.4);
--card-bg: rgba(17, 17, 27, 0.4);
--accent-color: #ffffff;
--accent-bg: rgba(79, 70, 229, 0.1);
--blue-gradient: linear-gradient(45deg, #60A5FA, #3B82F6);
--purple-gradient: linear-gradient(45deg, #A78BFA, #8B5CF6);
--pink-gradient: linear-gradient(45deg, #F472B6, #EC4899);
--shadow-color: rgba(0, 0, 0, 0.2);
}
}
@media (prefers-color-scheme: light) {
:root {
--bg-primary: #ffffff;
--bg-secondary: rgba(243, 244, 246, 0.4);
--bg-hover: rgba(229, 231, 235, 0.95);
--text-primary: #1F2937;
--text-secondary: #4B5563;
--text-tertiary: #6B7280;
--border-color: rgba(209, 213, 219, 0.5);
--border-hover: rgba(79, 70, 229, 0.4);
--card-bg: rgba(249, 250, 251, 0.4);
--accent-color: #4F46E5;
--accent-bg: rgba(79, 70, 229, 0.1);
--blue-gradient: linear-gradient(45deg, #3B82F6, #2563EB);
--purple-gradient: linear-gradient(45deg, #8B5CF6, #EF43CD);
--pink-gradient: linear-gradient(45deg, #EC4899, #DB2777);
--shadow-color: rgba(0, 0, 0, 0.1);
}
}
</style>
"""
DESCRIPTION_HTML = """
<div style="
background: var(--bg-secondary, rgba(30, 30, 45, 0.95));
border-radius: 12px;
padding: 24px;
margin: 16px 0;
">
<div style="
display: flex;
flex-direction: column;
gap: 16px;
">
<div style="
color: var(--text-primary);
font-size: 1.1rem;
font-weight: 500;
display: flex;
align-items: center;
gap: 8px;
">
🎯 Purpose
<span style="
background: linear-gradient(to right, var(--accent-blue), var(--accent-purple));
color: white;
padding: 4px 12px;
border-radius: 100px;
font-size: 0.9rem;
">Latest Update: Feb 2025</span>
</div>
<p style="
color: var(--text-secondary);
margin: 0;
line-height: 1.6;
">
This comprehensive benchmark evaluates language models' ability to effectively utilize tools and functions in complex scenarios.
</p>
<div style="
color: var(--text-primary);
font-size: 1.1rem;
font-weight: 500;
margin-top: 8px;
">
🔍 What We Evaluate
</div>
<div style="
display: grid;
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
gap: 16px;
color: var(--text-secondary);
">
<div style="display: flex; gap: 8px; align-items: center;">
🔄 Single/Multi-turn Interactions
</div>
<div style="display: flex; gap: 8px; align-items: center;">
🧩 Function Composition
</div>
<div style="display: flex; gap: 8px; align-items: center;">
⚡ Error Handling
</div>
</div>
<div style="
color: var(--text-primary);
font-size: 1.1rem;
font-weight: 500;
margin-top: 8px;
">
📊 Key Results
</div>
<div style="
display: grid;
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
gap: 16px;
color: var(--text-secondary);
">
<div style="display: flex; gap: 8px; align-items: center;">
✅ Tool Selection Quality
</div>
<div style="display: flex; gap: 8px; align-items: center;">
💰 Open Vs Closed Source
</div>
<div style="display: flex; gap: 8px; align-items: center;">
⚖️ Overall Effectiveness
</div>
</div>
</div>
</div>
"""
HEADER_CONTENT = (
COMMON
+ """
<style>
.header-wrapper {
background: var(--bg-primary);
padding: 4rem 2rem;
border-radius: 16px;
margin-bottom: 0;
transition: all 0.3s ease;
}
.header-content {
max-width: 72rem;
margin: 0 auto;
}
.title-section {
text-align: center;
margin-bottom: 4rem;
}
.title-gradient {
font-size: 5rem;
font-weight: 800;
line-height: 1.1;
background: var(--purple-gradient);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin-bottom: 0.5rem;
}
.subtitle-white {
font-size: 5rem;
font-weight: 800;
line-height: 1.1;
color: var(--text-primary);
margin-bottom: 3rem;
transition: color 0.3s ease;
}
.description {
color: var(--text-secondary);
font-size: 1.25rem;
line-height: 1.75;
max-width: 800px;
margin: 0 auto;
text-align: center;
transition: color 0.3s ease;
}
.highlight-question {
background: var(--blue-gradient);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
display: block;
margin-top: 1rem;
font-size: 1.5rem;
font-weight: 500;
}
.metrics-grid {
display: grid;
grid-template-columns: repeat(3, 1fr);
gap: 1.5rem;
margin-top: 4rem;
}
.metric-card {
background: var(--bg-secondary);
border: 1px solid var(--border-color);
border-radius: 1rem;
padding: 2rem;
transition: all 0.3s ease;
align-items: center;
}
.metric-card:hover {
transform: translateY(-5px);
border-color: var(--border-hover);
box-shadow: 0 4px 20px var(--shadow-color);
}
.metric-number {
font-size: 4rem;
font-weight: 800;
margin-bottom: 1rem;
}
.metric-blue {
background: var(--blue-gradient);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.metric-purple {
background: var(--purple-gradient);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.metric-pink {
background: var(--pink-gradient);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.metric-label {
color: var(--text-secondary);
font-size: 1.5rem;
margin-bottom: 1.5rem;
transition: color 0.3s ease;
}
.metric-detail {
font-size: 1.125rem;
line-height: 1.75;
margin-top: 0.5rem;
transition: color 0.3s ease;
}
.metric-detail.primary {
color: var(--accent-color);
}
.metric-detail.secondary {
color: var(--text-secondary);
}
.actions {
display: flex;
gap: 1rem;
justify-content: center;
margin-top: 3rem;
}
.action-button {
display: flex;
align-items: center;
gap: 0.5rem;
padding: 0.75rem 1.5rem;
background: var(--bg-secondary);
border: 1px solid var(--border-color);
border-radius: 100px;
color: var(--text-primary) !important;
text-decoration: none !important;
font-size: 0.95rem;
transition: all 0.3s ease;
}
.action-button:hover {
transform: translateY(-2px);
border-color: var(--accent-color);
background: var(--accent-bg);
}
@media (max-width: 768px) {
.title-gradient, .subtitle-white {
font-size: 3rem;
}
.metrics-grid {
grid-template-columns: 1fr;
}
}
</style>
<div class="header-wrapper">
<div class="header-content">
<div class="title-section">
<div class="title-gradient">Agent Leaderboard</div>
<div class="description">
GenAI is evolving rapidly, with developers building exciting, high ROI agents.
We built this leaderboard to answer one simple question:
<div class="highlight-question">
"How do top LLMs perform in real-world agentic scenarios?"
</div>
</div>
</div>
<div class="actions">
<a href="https://galileo.ai/blog/agent-leaderboard" class="action-button">
<svg width="20" height="20" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2">
<path d="M15 7h3a5 5 0 0 1 5 5 5 5 0 0 1-5 5h-3m-6 0H6a5 5 0 0 1-5-5 5 5 0 0 1 5-5h3"/>
<line x1="8" y1="12" x2="16" y2="12"/>
</svg>
Blog
</a>
<a href="https://github.com/rungalileo/agent-leaderboard" class="action-button">
<svg width="20" height="20" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2">
<path d="M9 19c-5 1.5-5-2.5-7-3m14 6v-3.87a3.37 3.37 0 0 0-.94-2.61c3.14-.35 6.44-1.54 6.44-7A5.44 5.44 0 0 0 20 4.77 5.07 5.07 0 0 0 19.91 1S18.73.65 16 2.48a13.38 13.38 0 0 0-7 0C6.27.65 5.09 1 5.09 1A5.07 5.07 0 0 0 5 4.77a5.44 5.44 0 0 0-1.5 3.78c0 5.42 3.3 6.61 6.44 7A3.37 3.37 0 0 0 9 18.13V22"/>
</svg>
GitHub
</a>
<a href="https://huggingface.co/datasets/galileo-ai/agent-leaderboard" class="action-button">
<svg width="20" height="20" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2">
<path d="M21 15v4a2 2 0 0 1-2 2H5a2 2 0 0 1-2-2v-4"/>
<polyline points="7 10 12 15 17 10"/>
<line x1="12" y1="15" x2="12" y2="3"/>
</svg>
Dataset
</a>
<a href="https://mail.google.com/mail/?view=cm&fs=1&to=marketing@galileo.ai&su=Get%20Model%20Added%20to%20Leaderboard&body=Hi%20there%2C%0A%0AI%20would%20like%20to%20add%20my%20model%20to%20the%20Agent%20Leaderboard.%0A%0AModel%20Name%3A%0AModel%20URL%3A%0A%0ABest%20regards" class="action-button" target="_blank" rel="noopener noreferrer">
<svg width="20" height="20" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2">
<path d="M19 3H5a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h14a2 2 0 0 0 2-2V5a2 2 0 0 0-2-2z"/>
<line x1="12" y1="8" x2="12" y2="16"/>
<line x1="8" y1="12" x2="16" y2="12"/>
</svg>
Add Your Model
</a>
</div>
</div>
</div>
"""
)
CARDS = """ <div class="metrics-grid">
<div class="metric-card">
<div class="metric-number metric-blue">20</div>
<div class="metric-label">Total Models</div>
<div class="metric-detail primary">15 Private</div>
<div class="metric-detail primary">5 Open Source</div>
</div>
<div class="metric-card">
<div class="metric-number metric-purple">14</div>
<div class="metric-label">Evaluation Datasets</div>
<div class="metric-detail primary">Multi-Domain Testing</div>
<div class="metric-detail primary">Real-world use cases</div>
</div>
<div class="metric-card">
<div class="metric-number metric-pink">TSQ</div>
<div class="metric-label">Evaluation Metric</div>
<div class="metric-detail primary">Tool Selection Quality</div>
<div class="metric-detail primary">GPT-4o Based Judge</div>
</div>
</div>"""
METHODOLOGY = """
<style>
@media (prefers-color-scheme: dark) {
:root {
--bg-primary: #0B0B19;
--bg-secondary: rgba(19, 19, 37, 0.4);
--bg-tertiary: rgba(30, 30, 45, 0.95);
--text-primary: #ffffff;
--text-secondary: #94A3B8;
--text-tertiary: #E2E8F0;
--border-primary: rgba(31, 41, 55, 0.5);
--border-hover: rgba(79, 70, 229, 0.4);
--accent-blue: #60A5FA;
--accent-purple: #A78BFA;
--accent-pink: #F472B6;
--card-hover-bg: rgba(79, 70, 229, 0.1);
--shadow-color: rgba(79, 70, 229, 0.1);
}
}
@media (prefers-color-scheme: light) {
:root {
--bg-primary: #ffffff;
--bg-secondary: rgba(243, 244, 246, 0.4);
--bg-tertiary: rgba(249, 250, 251, 0.95);
--text-primary: #111827;
--text-secondary: #4B5563;
--text-tertiary: #6B7280;
--border-primary: rgba(209, 213, 219, 0.5);
--border-hover: rgba(79, 70, 229, 0.4);
--accent-blue: #3B82F6;
--accent-purple: #8B5CF6;
--accent-pink: #EC4899;
--card-hover-bg: rgba(243, 244, 246, 0.8);
--shadow-color: rgba(0, 0, 0, 0.1);
}
}
/* [Previous CSS remains the same until features-grid] */
/* Features Grid Section */
.features-grid {
display: grid;
grid-template-columns: repeat(3, 1fr);
gap: 1.5rem;
width: 100%;
padding: 2rem 0;
}
.dataset-table {
width: 100%;
border-collapse: separate;
border-spacing: 0;
margin: 2rem 0;
background: var(--bg-tertiary);
border-radius: 1rem;
overflow: hidden;
box-shadow: 0 4px 20px var(--shadow-color);
}
.dataset-table thead {
background: linear-gradient(90deg, var(--accent-blue), var(--accent-purple));
}
.dataset-table th {
padding: 1.25rem 1rem;
text-align: left;
color: white;
font-weight: 600;
font-size: 1rem;
}
.dataset-table td {
padding: 1rem;
border-bottom: 1px solid var(--border-primary);
color: var(--text-secondary);
transition: all 0.2s ease;
}
.dataset-table tbody tr:hover td {
background: var(--card-hover-bg);
color: var(--text-primary);
}
.dataset-table td[rowspan] {
background: var(--bg-secondary);
color: var(--accent-blue);
font-weight: 600;
border-right: 1px solid var(--border-primary);
}
.purpose-cell {
max-width: 300px;
line-height: 1.5;
}
.category-cell {
color: var(--accent-purple);
font-weight: 500;
}
.dataset-name {
font-family: monospace;
color: var(--accent-pink);
font-size: 0.9rem;
}
.code-intro {
color: var(--text-secondary);
font-size: 1.1rem;
margin-bottom: 1.5rem;
line-height: 1.6;
}
.section-divider {
margin: 1rem 0;
border-top: 1px solid var(--border-color);
opacity: 0.3;
}
.key-insights thead tr {
background: linear-gradient(90deg, #60A5FA, #818CF8);
}
.key-insights td:first-child {
color: var(--accent-blue);
background: var(--bg-primary);
}
.key-insights td:last-child {
background: var(--bg-primary);
}
.key-insights td {
padding: 1rem;
border-bottom: 1px solid rgba(31, 41, 55, 0.5);
}
.highlight {
color: var(--accent-blue);
font-weight: 600;
display: inline-flex;
align-items: center;
}
.highlight::after {
content: ":";
margin-right: 0.5rem; /* Adds space after the colon */
}
@media (prefers-color-scheme: dark) {
:root {
--bg-primary: #0B0B19;
--bg-secondary: rgba(19, 19, 37, 0.4);
--text-primary: #ffffff;
--text-secondary: #94A3B8;
--border-color: rgba(31, 41, 55, 0.5);
--accent-blue: #60A5FA;
--accent-purple: #A78BFA;
--code-bg: #1E1E2E;
--code-line-highlight: rgba(96, 165, 250, 0.1);
--bullet-color: #60A5FA;
--table-header: #1a1b1e;
--table-border: #2d2e32;
--table-hover: #2d2e32;
}
}
@media (prefers-color-scheme: light) {
:root {
--bg-primary: #ffffff;
--bg-secondary: rgba(243, 244, 246, 0.4);
--text-primary: #111827;
--text-secondary: #4B5563;
--border-color: rgba(209, 213, 219, 0.5);
--accent-blue: #3B82F6;
--accent-purple: #8B5CF6;
--code-bg: #F8FAFC;
--code-line-highlight: rgba(59, 130, 246, 0.1);
--bullet-color: #3B82F6;
--table-header: #F8FAFC;
--table-border: #E5E7EB;
--table-hover: #F3F4F6;
}
}
.methodology-content {
max-width: 1200px;
margin: 0 auto;
padding: 2rem;
color: var(--text-secondary);
line-height: 1.7;
font-size: 1rem;
}
.section-title {
font-size: 2.5rem;
font-weight: 700;
margin: 3rem 0 1.5rem;
color: var(--text-primary);
background: linear-gradient(to right, var(--accent-blue), var(--accent-purple));
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
letter-spacing: -0.02em;
}
.subsection-title {
font-size: 1.75rem;
font-weight: 600;
margin: 2rem 0 1rem;
color: var(--text-primary);
letter-spacing: -0.01em;
}
.content-block {
background: var(--bg-secondary);
border: 1px solid var(--border-color);
border-radius: 12px;
padding: 1.5rem;
margin: 1.5rem 0;
}
.methodology-list {
list-style: none !important; /* Force remove default bullets */
padding: 0;
margin: 1rem 0;
}
.methodology-list li {
padding-left: 2rem;
position: relative;
margin: 1rem 0;
color: var(--text-secondary);
display: flex; /* Add flex display */
align-items: flex-start; /* Align items to top */
}
.methodology-list li::before {
content: '';
position: absolute;
left: 0;
top: 0.75rem;
width: 8px;
height: 8px;
background: var(--bullet-color);
border-radius: 50%;
box-shadow: 0 0 0 2px rgba(96, 165, 250, 0.2);
flex-shrink: 0; /* Prevent bullet from shrinking */
}
/* Additional fix for nested list items */
.methodology-list li > * {
list-style: none !important;
margin-left: 0;
padding-left: 0;
}
.code-block {
background: var(--code-bg);
border-radius: 12px;
padding: 1.5rem;
margin: 1.5rem 0;
font-family: 'SF Mono', 'Menlo', monospace;
font-size: 0.9rem;
overflow-x: auto;
border: 1px solid var(--border-color);
}
.code-block pre {
margin: 0;
padding: 0;
}
.highlight {
color: var(--accent-blue);
font-weight: 600;
}
/* Dataset Table Styling */
.dataset-table {
width: 100%;
border-collapse: collapse;
margin: 1.5rem 0;
background: var(--bg-secondary);
border-radius: 12px;
overflow: hidden;
}
.dataset-table th {
background: var(--table-header);
padding: 1rem;
text-align: left;
font-weight: 600;
color: var(--text-primary);
border-bottom: 2px solid var(--table-border);
}
.dataset-table td {
padding: 1rem;
border-bottom: 1px solid var(--table-border);
color: var(--text-secondary);
}
.dataset-table tbody tr:hover {
background: var(--table-hover);
}
.dataset-table td:first-child {
font-weight: 500;
}
</style>
<!-- Methodology Section -->
<h1 class="section-title">Methodology</h1>
<p>Our evaluation process follows a systematic approach to ensure comprehensive and fair assessment of AI agents. We evaluate language models' ability to effectively use tools
in single and multi-turn conversations. Our evaluation focuses on both basic functionality and edge
cases that challenge real-world applicability.</p>
<ul class="methodology-list">
<li><span class="highlight">Model Selection</span>We begin by curating a diverse set of leading language models, including both proprietary and open-source implementations.</li>
<li><span class="highlight">Agent Configuration</span>Each model is configured as an agent using a standardized system prompt and given access to a consistent set of tools.</li>
<li><span class="highlight">Metric Definition</span> <a href="https://docs.galileo.ai/galileo/gen-ai-studio-products/galileo-guardrail-metrics/tool-selection-quality#tool-selection-quality">Tool Selection Quality (TSQ)</a></li>
<li><span class="highlight">Scoring System</span>The final performance score is calculated as an equally weighted average across all datasets.</li>
<li><span class="highlight">Dataset Curation</span>We strategically sampled from established benchmarking datasets. See later section for more info.</li>
<div class="methodology-section">
<div class="table-container">
<table class="dataset-table">
<thead>
<tr>
<th>Dataset</th>
<th>Domains</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFCL</td>
<td>Mathematics, Entertainment, Education, and Academic Domains</td>
<td><a href="https://gorilla.cs.berkeley.edu/leaderboard.html">View Dataset</a></td>
</tr>
<tr>
<td>τ-bench</td>
<td>Retail and Airline Industry Scenarios</td>
<td><a href="https://github.com/sierra-research/tau-bench">View Dataset</a></td>
</tr>
<tr>
<td>xLAM</td>
<td>Cross-domain Data Generation (21 Domains)</td>
<td><a href="https://www.salesforce.com/blog/xlam-large-action-models/">View Dataset</a></td>
</tr>
<tr>
<td>ToolACE</td>
<td>API Interactions across 390 Domains</td>
<td><a href="https://arxiv.org/abs/2409.00920">View Dataset</a></td>
</tr>
</tbody>
</table>
</div>
</div>
</ul>
<div class="methodology-section">
<h1 class="section-title">Key Insights</h1>
<div class="table-container">
<table class="dataset-table key-insights">
<thead>
<tr>
<th>Category</th>
<th>Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Champion</td>
<td>Claude 3.7 Sonnet(0.953) comes at the top but Gemini-2.0-flash(0.938) & Gemini-2.0-flash-lite(0.933) dominate at a very affordable cost, excelling in both complex tasks and safety features.</td>
</tr>
<tr>
<td>Price-Performance Paradox</td>
<td>Top 3 models span 10x price difference yet only 2% performance gap, challenging pricing assumptions</td>
</tr>
<tr>
<td>Open Vs Closed Source</td>
<td>The new Mistral-small leads in open source models and performs similar to GPT-4o-mini at 0.83, signaling OSS maturity in tool calling</td>
</tr>
<tr>
<td>Reasoning Models</td>
<td>Although being great for reasoning, o1 and o3-mini are far from perfect scoring 0.87 and 0.84 respectively. DeepSeek V3 and R1 were excluded from rankings due to limited function support</td>
</tr>
<tr>
<td>Tool Miss Detection</td>
<td>Low dataset averages of 0.60(tool_miss) and 0.73(miss_func) reveal fundamental challenges in handling edge cases and maintaining context, even as models excel at basic tasks</td>
</tr>
<tr>
<td>Architecture Trade-offs</td>
<td>Long context vs parallel execution shows architectural limits: O1 leads context (0.98) but fails parallel tasks (0.43), while GPT-4o shows opposite pattern</td>
</tr>
</tbody>
</table>
</div>
<h1 class="section-title">Development Implications</h2>
<div class="table-container">
<table class="dataset-table key-insights">
<thead>
<tr>
<th>Area</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Complexity</td>
<td>Simple tasks work with most models. Complex workflows requiring multiple tools need models with 0.85+ scores in composite tests</td>
</tr>
<tr>
<td>Error Handling</td>
<td>Models with low tool selection scores need guardrails. Add validation layers and structured error recovery, especially for parameter collection</td>
</tr>
<tr>
<td>Context Management</td>
<td>Long conversations require either models strong in context retention or external context storage systems</td>
</tr>
<tr>
<td>Reasoning Models</td>
<td>While o1 and o3-mini excelled in function calling, DeepSeek V3 and R1 were excluded from rankings due to limited function support</td>
</tr>
<tr>
<td>Safety Controls</td>
<td>Add strict tool access controls for models weak in irrelevance detection. Include validation layers for inconsistent performers</td>
</tr>
<tr>
<td>Open Vs Closed Source</td>
<td>Private models lead in complex tasks, but open-source options work well for basic operations. Choose based on your scaling needs</td>
</tr>
</tbody>
</table>
</div>
<div class="section-divider"></div>
<h1 class="section-title">What Makes Tool Selection Hard?</h1>
<div class="section-divider"></div>
<h2 class="subsection-title">Scenario Recognition</h2>
<div class="explanation-block">
<p>When an agent encounters a query, it must first determine if tool usage is warranted. Information may already exist in the conversation history, making tool calls redundant. Alternatively, available tools might be insufficient or irrelevant to the task, requiring the agent to acknowledge limitations rather than force inappropriate tool usage.</p>
</div>
<div class="section-divider"></div>
<h2 class="subsection-title">Tool Selection Dynamics</h2>
<div class="explanation-block">
<p>Tool selection isn't binary—it involves both precision and recall. An agent might correctly identify one necessary tool while missing others (recall issue) or select appropriate tools alongside unnecessary ones (precision issue). While suboptimal, these scenarios represent different severity levels of selection errors.</p>
</div>
<div class="section-divider"></div>
<h2 class="subsection-title">Parameter Handling</h2>
<div class="explanation-block">
<p>Even with correct tool selection, argument handling introduces additional complexity. Agents must:</p>
<ul class="methodology-list">
<li>Provide all required parameters with correct naming</li>
<li>Handle optional parameters appropriately</li>
<li>Maintain parameter value accuracy</li>
<li>Format arguments according to tool specifications</li>
</ul>
</div>
<div class="section-divider"></div>
<h2 class="subsection-title">Sequential Decision Making</h2>
<div class="explanation-block">
<p>Multi-step tasks require agents to:</p>
<ul class="methodology-list">
<li>Determine optimal tool calling sequence</li>
<li>Handle interdependencies between tool calls</li>
<li>Maintain context across multiple operations</li>
<li>Adapt to partial results or failures</li>
</ul>
</div>
<div class="section-divider"></div>
<h1 class="section-title">How Do We Measure Agent's Performance?</h1>
<p class="code-intro">We developed the Tool Selection Quality metric to assess agents' tool call performance, evaluating tool selection accuracy and effectiveness of parameter usage. This is an example code for evaluating an LLM with a dataset with Galileo's Tool Selection Quality.</p>
<div class="code-block">
<pre>
import promptquality as pq
df = pd.read_parquet(file_path)
chainpoll_tool_selection_scorer = pq.CustomizedChainPollScorer(
scorer_name=pq.CustomizedScorerName.tool_selection_quality,
model_alias=pq.Models.gpt_4o,
)
evaluate_handler = pq.GalileoPromptCallback(
project_name=project_name,
run_name=run_name,
scorers=[chainpoll_tool_selection_scorer],
)
llm = llm_handler.get_llm(model, temperature=0.0, max_tokens=4000) # llm_handler is a custom handler for LLMs
system_msg = {
"role": "system",
"content": 'Your job is to use the given tools to answer the query of human. If there is no relevant tool then reply with "I cannot answer the question with given tools". If tool is available but sufficient information is not available, then ask human to get the same. You can call as many tools as you want. Use multiple tools if needed. If the tools need to be called in a sequence then just call the first tool.',
}
for row in df.itertuples():
chain = llm.bind_tools(tools) # attach the tools
outputs.append(
chain.invoke(
[system_msg, *row.conversation],
config=dict(callbacks=[evaluate_handler])
)
)
evaluate_handler.finish()
</pre>
</div>
</div>
<h1 class="section-title">Dataset Structure</h2>
<div class="table-container">
<table class="dataset-table">
<thead>
<tr>
<th>Type</th>
<th>Samples</th>
<th>Category</th>
<th>Dataset Name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="5">Single-Turn</td>
<td>100 + 100</td>
<td class="category-cell">Single Function Call</td>
<td class="dataset-name">xlam_single_tool_single_call, xlam_multiple_tool_single_call</td>
<td class="purpose-cell">Evaluates basic ability to read documentation and make single function calls</td>
</tr>
<tr>
<td>200 + 50</td>
<td class="category-cell">Multiple Function Call</td>
<td class="dataset-name">xlam_multiple_tool_multiple_call, xlam_single_tool_multiple_call</td>
<td class="purpose-cell">Tests parallel execution and result aggregation capabilities</td>
</tr>
<tr>
<td>100</td>
<td class="category-cell">Irrelevant Query</td>
<td class="dataset-name">BFCL_v3_irrelevance</td>
<td class="purpose-cell">Tests ability to recognize when available tools don't match user needs</td>
</tr>
<tr>
<td>100</td>
<td class="category-cell">Long Context</td>
<td class="dataset-name">tau_long_context</td>
<td class="purpose-cell">Assesses handling of extended interactions and complex instructions</td>
</tr>
<tr>
<td>100</td>
<td class="category-cell">Missing Function</td>
<td class="dataset-name">xlam_tool_miss</td>
<td class="purpose-cell">Tests graceful handling of unavailable tools</td>
</tr>
<tr>
<td rowspan="5">Multi-Turn</td>
<td>50 + 30</td>
<td class="category-cell">Single Function Call</td>
<td class="dataset-name">BFCL_v3_multi_turn_base_single_func_call, toolscs_single_func_call</td>
<td class="purpose-cell">Tests basic conversational function calling abilities</td>
</tr>
<tr>
<td>50</td>
<td class="category-cell">Multiple Function Call</td>
<td class="dataset-name">BFCL_v3_multi_turn_base_multi_func_call</td>
<td class="purpose-cell">Evaluates handling of multiple function calls in conversation</td>
</tr>
<tr>
<td>100</td>
<td class="category-cell">Missing Function</td>
<td class="dataset-name">BFCL_v3_multi_turn_miss_func</td>
<td class="purpose-cell">Tests graceful handling of unavailable tools</td>
</tr>
<tr>
<td>100</td>
<td class="category-cell">Missing Parameters</td>
<td class="dataset-name">BFCL_v3_multi_turn_miss_param</td>
<td class="purpose-cell">Assesses parameter collection and handling incomplete information</td>
</tr>
<tr>
<td>100</td>
<td class="category-cell">Composite</td>
<td class="dataset-name">BFCL_v3_multi_turn_composite</td>
<td class="purpose-cell">Tests overall robustness in complex scenarios</td>
</tr>
</tbody>
</table>
</div>
<div class="section-divider"></div>
<h2 class="section-title">Citation</h2>
<div class="bibtex-citation" style="font-family: monospace; white-space: pre; padding: 1em; background-color: rgba(128, 128, 128, 0.1); border: 1px solid rgba(128, 128, 128, 0.2); border-radius: 4px; color: currentColor;">@misc{agent-leaderboard,
author = {Pratik Bhavsar},
title = {Agent Leaderboard},
year = {2025},
publisher = {Galileo.ai},
howpublished = {\\url{https://huggingface.co/spaces/galileo-ai/agent-leaderboard}}
}</div>
<!-- Features Grid Section -->
<div class="features-grid">
<div class="feature-card">
<div class="feature-icon">
<svg width="24" height="24" fill="none" stroke="var(--accent-blue)" stroke-width="2" viewBox="0 0 24 24">
<path d="M22 12h-4l-3 9L9 3l-3 9H2"/>
</svg>
</div>
<h3 class="feature-title">Make Better Decisions</h3>
<ul class="feature-list">
<li>Cost-effectiveness analysis</li>
<li>Business impact metrics</li>
<li>Vendor strategy insights</li>
</ul>
</div>
<div class="feature-card">
<div class="feature-icon">
<svg width="24" height="24" fill="none" stroke="var(--accent-purple)" stroke-width="2" viewBox="0 0 24 24">
<path d="M21 16V8a2 2 0 0 0-1-1.73l-7-4a2 2 0 0 0-2 0l-7 4A2 2 0 0 0 3 8v8a2 2 0 0 0 1 1.73l7 4a2 2 0 0 0 2 0l7-4A2 2 0 0 0 21 16z"/>
</svg>
</div>
<h3 class="feature-title">360° Domain Evaluation</h3>
<ul class="feature-list">
<li>Multi-domain evaluation</li>
<li>Real-world use cases</li>
<li>Edge case evaluation</li>
</ul>
</div>
<div class="feature-card">
<div class="feature-icon">
<svg width="24" height="24" fill="none" stroke="var(--accent-pink)" stroke-width="2" viewBox="0 0 24 24">
<path d="M21 2v6h-6M3 12a9 9 0 0 1 15-6.7L21 8M3 12a9 9 0 0 0 15 6.7L21 16M21 22v-6h-6"/>
</svg>
</div>
<h3 class="feature-title">Updated Periodically</h3>
<ul class="feature-list">
<li>15 private models evaluated</li>
<li>5 open source models included</li>
<li>Monthly model additions</li>
</ul>
</div>
</div>
"""
|