Spaces:
Runtime error
Runtime error
import os, sys | |
import gradio as gr | |
import mdtex2html | |
import torch | |
import transformers | |
from transformers import ( | |
AutoConfig, | |
AutoModel, | |
AutoTokenizer, | |
AutoTokenizer, | |
DataCollatorForSeq2Seq, | |
HfArgumentParser, | |
Seq2SeqTrainingArguments, | |
set_seed, | |
) | |
from arguments import ModelArguments, DataTrainingArguments | |
model = None | |
tokenizer = None | |
"""Override Chatbot.postprocess""" | |
def postprocess(self, y): | |
if y is None: | |
return [] | |
for i, (message, response) in enumerate(y): | |
y[i] = ( | |
None if message is None else mdtex2html.convert((message)), | |
None if response is None else mdtex2html.convert(response), | |
) | |
return y | |
gr.Chatbot.postprocess = postprocess | |
def parse_text(text): | |
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/""" | |
lines = text.split("\n") | |
lines = [line for line in lines if line != ""] | |
count = 0 | |
for i, line in enumerate(lines): | |
if "```" in line: | |
count += 1 | |
items = line.split('`') | |
if count % 2 == 1: | |
lines[i] = f'<pre><code class="language-{items[-1]}">' | |
else: | |
lines[i] = f'<br></code></pre>' | |
else: | |
if i > 0: | |
if count % 2 == 1: | |
line = line.replace("`", "\`") | |
line = line.replace("<", "<") | |
line = line.replace(">", ">") | |
line = line.replace(" ", " ") | |
line = line.replace("*", "*") | |
line = line.replace("_", "_") | |
line = line.replace("-", "-") | |
line = line.replace(".", ".") | |
line = line.replace("!", "!") | |
line = line.replace("(", "(") | |
line = line.replace(")", ")") | |
line = line.replace("$", "$") | |
lines[i] = "<br>"+line | |
text = "".join(lines) | |
return text | |
def predict(input, chatbot, max_length, top_p, temperature, history): | |
chatbot.append((parse_text(input), "")) | |
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p, | |
temperature=temperature): | |
chatbot[-1] = (parse_text(input), parse_text(response)) | |
yield chatbot, history | |
def reset_user_input(): | |
return gr.update(value='') | |
def reset_state(): | |
return [], [] | |
with gr.Blocks() as demo: | |
gr.HTML("""<h1 align="center">ChatGLM</h1>""") | |
chatbot = gr.Chatbot() | |
with gr.Row(): | |
with gr.Column(scale=4): | |
with gr.Column(scale=12): | |
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style( | |
container=False) | |
with gr.Column(min_width=32, scale=1): | |
submitBtn = gr.Button("Submit", variant="primary") | |
with gr.Column(scale=1): | |
emptyBtn = gr.Button("Clear History") | |
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True) | |
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True) | |
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True) | |
history = gr.State([]) | |
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history], | |
show_progress=True) | |
submitBtn.click(reset_user_input, [], [user_input]) | |
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True) | |
def main(): | |
global model, tokenizer | |
parser = HfArgumentParser(( | |
ModelArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))[0] | |
else: | |
model_args = parser.parse_args_into_dataclasses()[0] | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, trust_remote_code=True) | |
config = AutoConfig.from_pretrained( | |
model_args.model_name_or_path, trust_remote_code=True) | |
config.pre_seq_len = model_args.pre_seq_len | |
config.prefix_projection = model_args.prefix_projection | |
if model_args.ptuning_checkpoint is not None: | |
print(f"Loading prefix_encoder weight from {model_args.ptuning_checkpoint}") | |
model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True) | |
prefix_state_dict = torch.load(os.path.join(model_args.ptuning_checkpoint, "pytorch_model.bin")) | |
new_prefix_state_dict = {} | |
for k, v in prefix_state_dict.items(): | |
if k.startswith("transformer.prefix_encoder."): | |
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v | |
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict) | |
else: | |
model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True) | |
if model_args.quantization_bit is not None: | |
print(f"Quantized to {model_args.quantization_bit} bit") | |
model = model.quantize(model_args.quantization_bit) | |
if model_args.pre_seq_len is not None: | |
# P-tuning v2 | |
model = model.half().cuda() | |
model.transformer.prefix_encoder.float().cuda() | |
model = model.eval() | |
demo.queue().launch(share=False, inbrowser=True) | |
if __name__ == "__main__": | |
main() |