File size: 2,030 Bytes
8847701 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import os
from typing import Dict, Tuple, Union, Optional
from torch.nn import Module
from transformers import AutoModel
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
# transformer.word_embeddings 占用1层
# transformer.final_layernorm 和 lm_head 占用1层
# transformer.layers 占用 28 层
# 总共30层分配到num_gpus张卡上
num_trans_layers = 28
per_gpu_layers = 30 / num_gpus
# bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
# windows下 model.device 会被设置成 transformer.word_embeddings.device
# linux下 model.device 会被设置成 lm_head.device
# 在调用chat或者stream_chat时,input_ids会被放到model.device上
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
device_map = {'transformer.word_embeddings': 0,
'transformer.final_layernorm': 0, 'lm_head': 0}
used = 2
gpu_target = 0
for i in range(num_trans_layers):
if used >= per_gpu_layers:
gpu_target += 1
used = 0
assert gpu_target < num_gpus
device_map[f'transformer.layers.{i}'] = gpu_target
used += 1
return device_map
def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike], num_gpus: int = 2,
device_map: Optional[Dict[str, int]] = None, **kwargs) -> Module:
if num_gpus < 2 and device_map is None:
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half().cuda()
else:
from accelerate import dispatch_model
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half()
if device_map is None:
device_map = auto_configure_device_map(num_gpus)
model = dispatch_model(model, device_map=device_map)
return model
|