|
from transformers import AutoModel, AutoTokenizer |
|
import gradio as gr |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) |
|
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda() |
|
model = model.eval() |
|
|
|
MAX_TURNS = 20 |
|
MAX_BOXES = MAX_TURNS * 2 |
|
|
|
|
|
def predict(input, max_length, top_p, temperature, history=None): |
|
if history is None: |
|
history = [] |
|
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p, |
|
temperature=temperature): |
|
updates = [] |
|
for query, response in history: |
|
updates.append(gr.update(visible=True, value="用户:" + query)) |
|
updates.append(gr.update(visible=True, value="ChatGLM-6B:" + response)) |
|
if len(updates) < MAX_BOXES: |
|
updates = updates + [gr.Textbox.update(visible=False)] * (MAX_BOXES - len(updates)) |
|
yield [history] + updates |
|
|
|
|
|
with gr.Blocks() as demo: |
|
state = gr.State([]) |
|
text_boxes = [] |
|
for i in range(MAX_BOXES): |
|
if i % 2 == 0: |
|
text_boxes.append(gr.Markdown(visible=False, label="提问:")) |
|
else: |
|
text_boxes.append(gr.Markdown(visible=False, label="回复:")) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=4): |
|
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter", lines=11).style( |
|
container=False) |
|
with gr.Column(scale=1): |
|
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True) |
|
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True) |
|
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True) |
|
button = gr.Button("Generate") |
|
button.click(predict, [txt, max_length, top_p, temperature, state], [state] + text_boxes) |
|
demo.queue().launch(share=False, inbrowser=True) |
|
|