Upload folder using huggingface_hub
Browse files- api.py +2 -2
- cli_demo.py +2 -2
- web_demo.py +3 -3
- web_demo_old.py +26 -82
api.py
CHANGED
@@ -50,7 +50,7 @@ async def create_item(request: Request):
|
|
50 |
|
51 |
|
52 |
if __name__ == '__main__':
|
53 |
-
tokenizer = AutoTokenizer.from_pretrained("THUDM/
|
54 |
-
model = AutoModel.from_pretrained("THUDM/
|
55 |
model.eval()
|
56 |
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
|
|
|
50 |
|
51 |
|
52 |
if __name__ == '__main__':
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
54 |
+
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
55 |
model.eval()
|
56 |
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
|
cli_demo.py
CHANGED
@@ -4,8 +4,8 @@ import signal
|
|
4 |
from transformers import AutoTokenizer, AutoModel
|
5 |
import readline
|
6 |
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained("THUDM/
|
8 |
-
model = AutoModel.from_pretrained("THUDM/
|
9 |
model = model.eval()
|
10 |
|
11 |
os_name = platform.system()
|
|
|
4 |
from transformers import AutoTokenizer, AutoModel
|
5 |
import readline
|
6 |
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
8 |
+
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
9 |
model = model.eval()
|
10 |
|
11 |
os_name = platform.system()
|
web_demo.py
CHANGED
@@ -2,8 +2,8 @@ from transformers import AutoModel, AutoTokenizer
|
|
2 |
import gradio as gr
|
3 |
import mdtex2html
|
4 |
|
5 |
-
tokenizer = AutoTokenizer.from_pretrained("THUDM/
|
6 |
-
model = AutoModel.from_pretrained("THUDM/
|
7 |
model = model.eval()
|
8 |
|
9 |
"""Override Chatbot.postprocess"""
|
@@ -98,4 +98,4 @@ with gr.Blocks() as demo:
|
|
98 |
|
99 |
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
|
100 |
|
101 |
-
demo.queue().launch(share=
|
|
|
2 |
import gradio as gr
|
3 |
import mdtex2html
|
4 |
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
6 |
+
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
7 |
model = model.eval()
|
8 |
|
9 |
"""Override Chatbot.postprocess"""
|
|
|
98 |
|
99 |
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
|
100 |
|
101 |
+
demo.queue().launch(share=False, inbrowser=True)
|
web_demo_old.py
CHANGED
@@ -1,101 +1,45 @@
|
|
1 |
from transformers import AutoModel, AutoTokenizer
|
2 |
import gradio as gr
|
3 |
-
import mdtex2html
|
4 |
|
5 |
-
tokenizer = AutoTokenizer.from_pretrained("THUDM/
|
6 |
-
model = AutoModel.from_pretrained("THUDM/
|
7 |
model = model.eval()
|
8 |
|
9 |
-
|
|
|
10 |
|
11 |
|
12 |
-
def
|
13 |
-
if
|
14 |
-
|
15 |
-
for i, (message, response) in enumerate(y):
|
16 |
-
y[i] = (
|
17 |
-
None if message is None else mdtex2html.convert((message)),
|
18 |
-
None if response is None else mdtex2html.convert(response),
|
19 |
-
)
|
20 |
-
return y
|
21 |
-
|
22 |
-
|
23 |
-
gr.Chatbot.postprocess = postprocess
|
24 |
-
|
25 |
-
|
26 |
-
def parse_text(text):
|
27 |
-
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
|
28 |
-
lines = text.split("\n")
|
29 |
-
lines = [line for line in lines if line != ""]
|
30 |
-
count = 0
|
31 |
-
for i, line in enumerate(lines):
|
32 |
-
if "```" in line:
|
33 |
-
count += 1
|
34 |
-
items = line.split('`')
|
35 |
-
if count % 2 == 1:
|
36 |
-
lines[i] = f'<pre><code class="language-{items[-1]}">'
|
37 |
-
else:
|
38 |
-
lines[i] = f'<br></code></pre>'
|
39 |
-
else:
|
40 |
-
if i > 0:
|
41 |
-
if count % 2 == 1:
|
42 |
-
line = line.replace("`", "\`")
|
43 |
-
line = line.replace("<", "<")
|
44 |
-
line = line.replace(">", ">")
|
45 |
-
line = line.replace(" ", " ")
|
46 |
-
line = line.replace("*", "*")
|
47 |
-
line = line.replace("_", "_")
|
48 |
-
line = line.replace("-", "-")
|
49 |
-
line = line.replace(".", ".")
|
50 |
-
line = line.replace("!", "!")
|
51 |
-
line = line.replace("(", "(")
|
52 |
-
line = line.replace(")", ")")
|
53 |
-
line = line.replace("$", "$")
|
54 |
-
lines[i] = "<br>"+line
|
55 |
-
text = "".join(lines)
|
56 |
-
return text
|
57 |
-
|
58 |
-
|
59 |
-
def predict(input, chatbot, max_length, top_p, temperature, history):
|
60 |
-
chatbot.append((parse_text(input), ""))
|
61 |
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p,
|
62 |
temperature=temperature):
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
def reset_state():
|
73 |
-
return [], []
|
74 |
|
75 |
|
76 |
with gr.Blocks() as demo:
|
77 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
chatbot = gr.Chatbot()
|
80 |
with gr.Row():
|
81 |
with gr.Column(scale=4):
|
82 |
-
|
83 |
-
|
84 |
-
container=False)
|
85 |
-
with gr.Column(min_width=32, scale=1):
|
86 |
-
submitBtn = gr.Button("Submit", variant="primary")
|
87 |
with gr.Column(scale=1):
|
88 |
-
emptyBtn = gr.Button("Clear History")
|
89 |
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
|
90 |
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
|
91 |
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history],
|
96 |
-
show_progress=True)
|
97 |
-
submitBtn.click(reset_user_input, [], [user_input])
|
98 |
-
|
99 |
-
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
|
100 |
-
|
101 |
-
demo.queue().launch(share=True, inbrowser=True)
|
|
|
1 |
from transformers import AutoModel, AutoTokenizer
|
2 |
import gradio as gr
|
|
|
3 |
|
4 |
+
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
5 |
+
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
6 |
model = model.eval()
|
7 |
|
8 |
+
MAX_TURNS = 20
|
9 |
+
MAX_BOXES = MAX_TURNS * 2
|
10 |
|
11 |
|
12 |
+
def predict(input, max_length, top_p, temperature, history=None):
|
13 |
+
if history is None:
|
14 |
+
history = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p,
|
16 |
temperature=temperature):
|
17 |
+
updates = []
|
18 |
+
for query, response in history:
|
19 |
+
updates.append(gr.update(visible=True, value="用户:" + query))
|
20 |
+
updates.append(gr.update(visible=True, value="ChatGLM-6B:" + response))
|
21 |
+
if len(updates) < MAX_BOXES:
|
22 |
+
updates = updates + [gr.Textbox.update(visible=False)] * (MAX_BOXES - len(updates))
|
23 |
+
yield [history] + updates
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
with gr.Blocks() as demo:
|
27 |
+
state = gr.State([])
|
28 |
+
text_boxes = []
|
29 |
+
for i in range(MAX_BOXES):
|
30 |
+
if i % 2 == 0:
|
31 |
+
text_boxes.append(gr.Markdown(visible=False, label="提问:"))
|
32 |
+
else:
|
33 |
+
text_boxes.append(gr.Markdown(visible=False, label="回复:"))
|
34 |
|
|
|
35 |
with gr.Row():
|
36 |
with gr.Column(scale=4):
|
37 |
+
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter", lines=11).style(
|
38 |
+
container=False)
|
|
|
|
|
|
|
39 |
with gr.Column(scale=1):
|
|
|
40 |
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
|
41 |
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
|
42 |
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
|
43 |
+
button = gr.Button("Generate")
|
44 |
+
button.click(predict, [txt, max_length, top_p, temperature, state], [state] + text_boxes)
|
45 |
+
demo.queue().launch(share=False, inbrowser=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|