Spaces:
Build error
Build error
File size: 3,968 Bytes
0b5ceff cb92d2b 0b5ceff cb92d2b 0b5ceff cb92d2b 0b5ceff cb92d2b 0b5ceff fd757d2 0b5ceff cb92d2b 0b5ceff cb92d2b 0b5ceff cb92d2b 0b5ceff cb92d2b 0b5ceff cb92d2b 0b5ceff cb92d2b 0b5ceff cb92d2b 0b5ceff cb92d2b 0b5ceff cb92d2b 0b5ceff cb92d2b 0b5ceff cb92d2b 0b5ceff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
from diffusers import DiffusionPipeline, AutoencoderTiny, LCMScheduler
from compel import Compel
import torch
try:
import intel_extension_for_pytorch as ipex # type: ignore
except:
pass
import psutil
from config import Args
from pydantic import BaseModel, Field
from PIL import Image
base_model = "wavymulder/Analog-Diffusion"
lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
taesd_model = "madebyollin/taesd"
default_prompt = "Analog style photograph of young Harrison Ford as Han Solo, star wars behind the scenes"
class Pipeline:
class Info(BaseModel):
name: str = "controlnet"
title: str = "Text-to-Image LCM + LoRa"
description: str = "Generates an image from a text prompt"
input_mode: str = "text"
class InputParams(BaseModel):
prompt: str = Field(
default_prompt,
title="Prompt",
field="textarea",
id="prompt",
)
seed: int = Field(
8638236174640251, min=0, title="Seed", field="seed", hide=True, id="seed"
)
steps: int = Field(
4, min=2, max=15, title="Steps", field="range", hide=True, id="steps"
)
width: int = Field(
512, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
)
height: int = Field(
512, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
)
guidance_scale: float = Field(
0.2,
min=0,
max=4,
step=0.001,
title="Guidance Scale",
field="range",
hide=True,
id="guidance_scale",
)
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
if args.safety_checker:
self.pipe = DiffusionPipeline.from_pretrained(base_model)
else:
self.pipe = DiffusionPipeline.from_pretrained(
base_model, safety_checker=None
)
if args.use_taesd:
self.pipe.vae = AutoencoderTiny.from_pretrained(
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
)
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
self.pipe.set_progress_bar_config(disable=True)
self.pipe.to(device=device, dtype=torch_dtype)
self.pipe.unet.to(memory_format=torch.channels_last)
# check if computer has less than 64GB of RAM using sys or os
if psutil.virtual_memory().total < 64 * 1024**3:
self.pipe.enable_attention_slicing()
if args.torch_compile:
self.pipe.unet = torch.compile(
self.pipe.unet, mode="reduce-overhead", fullgraph=True
)
self.pipe.vae = torch.compile(
self.pipe.vae, mode="reduce-overhead", fullgraph=True
)
self.pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
self.pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
self.compel_proc = Compel(
tokenizer=self.pipe.tokenizer,
text_encoder=self.pipe.text_encoder,
truncate_long_prompts=False,
)
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
generator = torch.manual_seed(params.seed)
prompt_embeds = self.compel_proc(params.prompt)
results = self.pipe(
prompt_embeds=prompt_embeds,
generator=generator,
num_inference_steps=params.steps,
guidance_scale=params.guidance_scale,
width=params.width,
height=params.height,
output_type="pil",
)
nsfw_content_detected = (
results.nsfw_content_detected[0]
if "nsfw_content_detected" in results
else False
)
if nsfw_content_detected:
return None
return results.images[0]
|