Spaces:
Build error
Build error
File size: 6,409 Bytes
8a96a46 4b58964 8a96a46 c1b73bf 8a96a46 264f089 8a96a46 592470d 8a96a46 4b58964 a39f171 4b58964 a39f171 8a96a46 592470d 8a96a46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
from diffusers import (
AutoPipelineForImage2Image,
AutoencoderTiny,
)
import torch
try:
import intel_extension_for_pytorch as ipex # type: ignore
except:
pass
import psutil
from config import Args
from pydantic import BaseModel, Field
from PIL import Image
import math
from sfast.compilers.stable_diffusion_pipeline_compiler import (
compile,
CompilationConfig,
)
base_model = "stabilityai/sd-turbo"
taesd_model = "madebyollin/taesd"
default_prompt = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux"
default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
page_content = """
<h1 class="text-3xl font-bold">Real-Time SD-Turbo</h1>
<h3 class="text-xl font-bold">Image-to-Image</h3>
<p class="text-sm">
This demo showcases
<a
href="https://huggingface.co/stabilityai/sdxl-turbo"
target="_blank"
class="text-blue-500 underline hover:no-underline">SDXL Turbo</a>
Image to Image pipeline using
<a
href="https://huggingface.co/docs/diffusers/main/en/using-diffusers/sdxl_turbo"
target="_blank"
class="text-blue-500 underline hover:no-underline">Diffusers</a
> with a MJPEG stream server.
</p>
<p class="text-sm text-gray-500">
Change the prompt to generate different images, accepts <a
href="https://github.com/damian0815/compel/blob/main/doc/syntax.md"
target="_blank"
class="text-blue-500 underline hover:no-underline">Compel</a
> syntax.
</p>
"""
class Pipeline:
class Info(BaseModel):
name: str = "img2img"
title: str = "Image-to-Image SDXL"
description: str = "Generates an image from a text prompt"
input_mode: str = "image"
page_content: str = page_content
class InputParams(BaseModel):
prompt: str = Field(
default_prompt,
title="Prompt",
field="textarea",
id="prompt",
)
negative_prompt: str = Field(
default_negative_prompt,
title="Negative Prompt",
field="textarea",
id="negative_prompt",
hide=True,
)
seed: int = Field(
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
)
steps: int = Field(
1, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
)
width: int = Field(
512, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
)
height: int = Field(
512, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
)
strength: float = Field(
0.5,
min=0.25,
max=1.0,
step=0.001,
title="Strength",
field="range",
hide=True,
id="strength",
)
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
if args.safety_checker:
self.pipe = AutoPipelineForImage2Image.from_pretrained(base_model)
else:
self.pipe = AutoPipelineForImage2Image.from_pretrained(
base_model,
safety_checker=None,
)
if args.taesd:
self.pipe.vae = AutoencoderTiny.from_pretrained(
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
).to(device)
if args.sfast:
print("\nRunning sfast compile\n")
from sfast.compilers.stable_diffusion_pipeline_compiler import (
compile,
CompilationConfig,
)
config = CompilationConfig.Default()
config.enable_xformers = True
config.enable_triton = True
config.enable_cuda_graph = True
self.pipe = compile(self.pipe, config=config)
if args.oneflow:
print("\nRunning oneflow compile\n")
from onediff.infer_compiler import oneflow_compile
self.pipe.unet = oneflow_compile(self.pipe.unet)
self.pipe.vae.encoder = oneflow_compile(self.pipe.vae.encoder)
self.pipe.vae.decoder = oneflow_compile(self.pipe.vae.decoder)
self.pipe.set_progress_bar_config(disable=True)
self.pipe.to(device=device, dtype=torch_dtype)
if device.type != "mps":
self.pipe.unet.to(memory_format=torch.channels_last)
if args.torch_compile:
print("Running torch compile")
self.pipe.unet = torch.compile(
self.pipe.unet, mode="reduce-overhead", fullgraph=True
)
self.pipe.vae = torch.compile(
self.pipe.vae, mode="reduce-overhead", fullgraph=True
)
self.pipe(
prompt="warmup",
image=[Image.new("RGB", (768, 768))],
)
if args.compel:
from compel import Compel
self.pipe.compel_proc = Compel(
tokenizer=self.pipe.tokenizer,
text_encoder=self.pipe.text_encoder,
truncate_long_prompts=True,
)
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
generator = torch.manual_seed(params.seed)
steps = params.steps
strength = params.strength
if int(steps * strength) < 1:
steps = math.ceil(1 / max(0.10, strength))
prompt = params.prompt
prompt_embeds = None
if hasattr(self.pipe, "compel_proc"):
prompt_embeds = self.pipe.compel_proc(
[params.prompt, params.negative_prompt]
)
prompt = None
results = self.pipe(
image=params.image,
prompt_embeds=prompt_embeds,
prompt=prompt,
negative_prompt=params.negative_prompt,
generator=generator,
strength=strength,
num_inference_steps=steps,
guidance_scale=1.1,
width=params.width,
height=params.height,
output_type="pil",
)
nsfw_content_detected = (
results.nsfw_content_detected[0]
if "nsfw_content_detected" in results
else False
)
if nsfw_content_detected:
return None
result_image = results.images[0]
return result_image
|