radames commited on
Commit
394d08e
·
1 Parent(s): ee78277
pipelines/controlnetSegmindVegaRT.py ADDED
@@ -0,0 +1,293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import (
2
+ StableDiffusionXLControlNetImg2ImgPipeline,
3
+ ControlNetModel,
4
+ AutoencoderKL,
5
+ AutoencoderTiny,
6
+ LCMScheduler,
7
+ )
8
+ from compel import Compel, ReturnedEmbeddingsType
9
+ import torch
10
+ from pipelines.utils.canny_gpu import SobelOperator
11
+
12
+ try:
13
+ import intel_extension_for_pytorch as ipex # type: ignore
14
+ except:
15
+ pass
16
+
17
+ import psutil
18
+ from config import Args
19
+ from pydantic import BaseModel, Field
20
+ from PIL import Image
21
+ import math
22
+
23
+ controlnet_model = "diffusers/controlnet-canny-sdxl-1.0"
24
+ base_model = "segmind/Segmind-Vega"
25
+ lora_model = "segmind/Segmind-VegaRT"
26
+ taesd_model = "madebyollin/taesdxl"
27
+
28
+ default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
29
+ default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
30
+ page_content = """
31
+ <h1 class="text-3xl font-bold">Real-Time SegmindVegaRT</h1>
32
+ <h3 class="text-xl font-bold">Image-to-Image ControlNet</h3>
33
+ <p class="text-sm">
34
+ This demo showcases
35
+ <a
36
+ href="https://huggingface.co/segmind/Segmind-VegaRT"
37
+ target="_blank"
38
+ class="text-blue-500 underline hover:no-underline">Segmind-VegaRT</a>
39
+ Image to Image pipeline using
40
+ <a
41
+ href="https://huggingface.co/docs/diffusers/main/en/using-diffusers/sdxl_turbo"
42
+ target="_blank"
43
+ class="text-blue-500 underline hover:no-underline">Diffusers</a
44
+ > with a MJPEG stream server.
45
+ </p>
46
+ <p class="text-sm text-gray-500">
47
+ Change the prompt to generate different images, accepts <a
48
+ href="https://github.com/damian0815/compel/blob/main/doc/syntax.md"
49
+ target="_blank"
50
+ class="text-blue-500 underline hover:no-underline">Compel</a
51
+ > syntax.
52
+ </p>
53
+ """
54
+
55
+
56
+ class Pipeline:
57
+ class Info(BaseModel):
58
+ name: str = "controlnet+SegmindVegaRT"
59
+ title: str = "SegmindVegaRT + Controlnet"
60
+ description: str = "Generates an image from a text prompt"
61
+ input_mode: str = "image"
62
+ page_content: str = page_content
63
+
64
+ class InputParams(BaseModel):
65
+ prompt: str = Field(
66
+ default_prompt,
67
+ title="Prompt",
68
+ field="textarea",
69
+ id="prompt",
70
+ )
71
+ negative_prompt: str = Field(
72
+ default_negative_prompt,
73
+ title="Negative Prompt",
74
+ field="textarea",
75
+ id="negative_prompt",
76
+ hide=True,
77
+ )
78
+ seed: int = Field(
79
+ 2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
80
+ )
81
+ steps: int = Field(
82
+ 2, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
83
+ )
84
+ width: int = Field(
85
+ 1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
86
+ )
87
+ height: int = Field(
88
+ 1024, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
89
+ )
90
+ guidance_scale: float = Field(
91
+ 0.0,
92
+ min=0,
93
+ max=1,
94
+ step=0.001,
95
+ title="Guidance Scale",
96
+ field="range",
97
+ hide=True,
98
+ id="guidance_scale",
99
+ )
100
+ strength: float = Field(
101
+ 0.5,
102
+ min=0.25,
103
+ max=1.0,
104
+ step=0.001,
105
+ title="Strength",
106
+ field="range",
107
+ hide=True,
108
+ id="strength",
109
+ )
110
+ controlnet_scale: float = Field(
111
+ 0.5,
112
+ min=0,
113
+ max=1.0,
114
+ step=0.001,
115
+ title="Controlnet Scale",
116
+ field="range",
117
+ hide=True,
118
+ id="controlnet_scale",
119
+ )
120
+ controlnet_start: float = Field(
121
+ 0.0,
122
+ min=0,
123
+ max=1.0,
124
+ step=0.001,
125
+ title="Controlnet Start",
126
+ field="range",
127
+ hide=True,
128
+ id="controlnet_start",
129
+ )
130
+ controlnet_end: float = Field(
131
+ 1.0,
132
+ min=0,
133
+ max=1.0,
134
+ step=0.001,
135
+ title="Controlnet End",
136
+ field="range",
137
+ hide=True,
138
+ id="controlnet_end",
139
+ )
140
+ canny_low_threshold: float = Field(
141
+ 0.31,
142
+ min=0,
143
+ max=1.0,
144
+ step=0.001,
145
+ title="Canny Low Threshold",
146
+ field="range",
147
+ hide=True,
148
+ id="canny_low_threshold",
149
+ )
150
+ canny_high_threshold: float = Field(
151
+ 0.125,
152
+ min=0,
153
+ max=1.0,
154
+ step=0.001,
155
+ title="Canny High Threshold",
156
+ field="range",
157
+ hide=True,
158
+ id="canny_high_threshold",
159
+ )
160
+ debug_canny: bool = Field(
161
+ False,
162
+ title="Debug Canny",
163
+ field="checkbox",
164
+ hide=True,
165
+ id="debug_canny",
166
+ )
167
+
168
+ def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
169
+ controlnet_canny = ControlNetModel.from_pretrained(
170
+ controlnet_model,
171
+ torch_dtype=torch_dtype,
172
+ ).to(device)
173
+ vae = AutoencoderKL.from_pretrained(
174
+ "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
175
+ )
176
+ if args.safety_checker:
177
+ self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
178
+ base_model,
179
+ controlnet=controlnet_canny,
180
+ vae=vae,
181
+ )
182
+ else:
183
+ self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
184
+ base_model,
185
+ safety_checker=None,
186
+ controlnet=controlnet_canny,
187
+ vae=vae,
188
+ )
189
+ self.canny_torch = SobelOperator(device=device)
190
+
191
+ self.pipe.load_lora_weights(lora_model)
192
+ self.pipe.fuse_lora()
193
+ self.pipe.scheduler = LCMScheduler.from_pretrained(
194
+ base_model, subfolder="scheduler"
195
+ )
196
+ self.pipe.set_progress_bar_config(disable=True)
197
+ self.pipe.to(device=device, dtype=torch_dtype).to(device)
198
+ if device.type != "mps":
199
+ self.pipe.unet.to(memory_format=torch.channels_last)
200
+
201
+ if psutil.virtual_memory().total < 64 * 1024**3:
202
+ self.pipe.enable_attention_slicing()
203
+
204
+ if args.compel:
205
+ self.pipe.compel_proc = Compel(
206
+ tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
207
+ text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
208
+ returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
209
+ requires_pooled=[False, True],
210
+ )
211
+ if args.use_taesd:
212
+ self.pipe.vae = AutoencoderTiny.from_pretrained(
213
+ taesd_model, torch_dtype=torch_dtype, use_safetensors=True
214
+ ).to(device)
215
+
216
+ if args.torch_compile:
217
+ self.pipe.unet = torch.compile(
218
+ self.pipe.unet, mode="reduce-overhead", fullgraph=True
219
+ )
220
+ self.pipe.vae = torch.compile(
221
+ self.pipe.vae, mode="reduce-overhead", fullgraph=True
222
+ )
223
+ self.pipe(
224
+ prompt="warmup",
225
+ image=[Image.new("RGB", (768, 768))],
226
+ control_image=[Image.new("RGB", (768, 768))],
227
+ )
228
+
229
+ def predict(self, params: "Pipeline.InputParams") -> Image.Image:
230
+ generator = torch.manual_seed(params.seed)
231
+
232
+ prompt = params.prompt
233
+ negative_prompt = params.negative_prompt
234
+ prompt_embeds = None
235
+ pooled_prompt_embeds = None
236
+ negative_prompt_embeds = None
237
+ negative_pooled_prompt_embeds = None
238
+ if hasattr(self.pipe, "compel_proc"):
239
+ _prompt_embeds, pooled_prompt_embeds = self.pipe.compel_proc(
240
+ [params.prompt, params.negative_prompt]
241
+ )
242
+ prompt = None
243
+ negative_prompt = None
244
+ prompt_embeds = _prompt_embeds[0:1]
245
+ pooled_prompt_embeds = pooled_prompt_embeds[0:1]
246
+ negative_prompt_embeds = _prompt_embeds[1:2]
247
+ negative_pooled_prompt_embeds = pooled_prompt_embeds[1:2]
248
+
249
+ control_image = self.canny_torch(
250
+ params.image, params.canny_low_threshold, params.canny_high_threshold
251
+ )
252
+ steps = params.steps
253
+ strength = params.strength
254
+ if int(steps * strength) < 1:
255
+ steps = math.ceil(1 / max(0.10, strength))
256
+
257
+ results = self.pipe(
258
+ image=params.image,
259
+ control_image=control_image,
260
+ prompt=prompt,
261
+ negative_prompt=negative_prompt,
262
+ prompt_embeds=prompt_embeds,
263
+ pooled_prompt_embeds=pooled_prompt_embeds,
264
+ negative_prompt_embeds=negative_prompt_embeds,
265
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
266
+ generator=generator,
267
+ strength=strength,
268
+ num_inference_steps=steps,
269
+ guidance_scale=params.guidance_scale,
270
+ width=params.width,
271
+ height=params.height,
272
+ output_type="pil",
273
+ controlnet_conditioning_scale=params.controlnet_scale,
274
+ control_guidance_start=params.controlnet_start,
275
+ control_guidance_end=params.controlnet_end,
276
+ )
277
+
278
+ nsfw_content_detected = (
279
+ results.nsfw_content_detected[0]
280
+ if "nsfw_content_detected" in results
281
+ else False
282
+ )
283
+ if nsfw_content_detected:
284
+ return None
285
+ result_image = results.images[0]
286
+ if params.debug_canny:
287
+ # paste control_image on top of result_image
288
+ w0, h0 = (200, 200)
289
+ control_image = control_image.resize((w0, h0))
290
+ w1, h1 = result_image.size
291
+ result_image.paste(control_image, (w1 - w0, h1 - h0))
292
+
293
+ return result_image
pipelines/img2imgSegmindVegaRT.py CHANGED
@@ -24,14 +24,14 @@ taesd_model = "madebyollin/taesdxl"
24
  default_prompt = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux"
25
  default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
26
  page_content = """
27
- <h1 class="text-3xl font-bold">Real-Time SDXL Turbo</h1>
28
  <h3 class="text-xl font-bold">Image-to-Image</h3>
29
  <p class="text-sm">
30
  This demo showcases
31
  <a
32
- href="https://huggingface.co/stabilityai/sdxl-turbo"
33
  target="_blank"
34
- class="text-blue-500 underline hover:no-underline">SDXL Turbo</a>
35
  Image to Image pipeline using
36
  <a
37
  href="https://huggingface.co/docs/diffusers/main/en/using-diffusers/sdxl_turbo"
@@ -84,9 +84,9 @@ class Pipeline:
84
  1024, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
85
  )
86
  guidance_scale: float = Field(
87
- 0.2,
88
  min=0,
89
- max=20,
90
  step=0.001,
91
  title="Guidance Scale",
92
  field="range",
@@ -138,10 +138,10 @@ class Pipeline:
138
  if args.torch_compile:
139
  print("Running torch compile")
140
  self.pipe.unet = torch.compile(
141
- self.pipe.unet,
142
  )
143
  self.pipe.vae = torch.compile(
144
- self.pipe.vae,
145
  )
146
 
147
  self.pipe(
@@ -165,14 +165,14 @@ class Pipeline:
165
  negative_prompt_embeds = None
166
  negative_pooled_prompt_embeds = None
167
  if hasattr(self.pipe, "compel_proc"):
168
- prompt_embeds = self.pipe.compel_proc(
169
  [params.prompt, params.negative_prompt]
170
  )
171
  prompt = None
172
  negative_prompt = None
173
- prompt_embeds = prompt_embeds[0:1]
174
  pooled_prompt_embeds = pooled_prompt_embeds[0:1]
175
- negative_prompt_embeds = prompt_embeds[1:2]
176
  negative_pooled_prompt_embeds = pooled_prompt_embeds[1:2]
177
 
178
  steps = params.steps
 
24
  default_prompt = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux"
25
  default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
26
  page_content = """
27
+ <h1 class="text-3xl font-bold">Real-Time SegmindVegaRT</h1>
28
  <h3 class="text-xl font-bold">Image-to-Image</h3>
29
  <p class="text-sm">
30
  This demo showcases
31
  <a
32
+ href="https://huggingface.co/segmind/Segmind-VegaRT"
33
  target="_blank"
34
+ class="text-blue-500 underline hover:no-underline">SegmindVegaRT</a>
35
  Image to Image pipeline using
36
  <a
37
  href="https://huggingface.co/docs/diffusers/main/en/using-diffusers/sdxl_turbo"
 
84
  1024, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
85
  )
86
  guidance_scale: float = Field(
87
+ 0.0,
88
  min=0,
89
+ max=1,
90
  step=0.001,
91
  title="Guidance Scale",
92
  field="range",
 
138
  if args.torch_compile:
139
  print("Running torch compile")
140
  self.pipe.unet = torch.compile(
141
+ self.pipe.unet, mode="reduce-overhead", fullgraph=False
142
  )
143
  self.pipe.vae = torch.compile(
144
+ self.pipe.vae, mode="reduce-overhead", fullgraph=False
145
  )
146
 
147
  self.pipe(
 
165
  negative_prompt_embeds = None
166
  negative_pooled_prompt_embeds = None
167
  if hasattr(self.pipe, "compel_proc"):
168
+ _prompt_embeds, pooled_prompt_embeds = self.pipe.compel_proc(
169
  [params.prompt, params.negative_prompt]
170
  )
171
  prompt = None
172
  negative_prompt = None
173
+ prompt_embeds = _prompt_embeds[0:1]
174
  pooled_prompt_embeds = pooled_prompt_embeds[0:1]
175
+ negative_prompt_embeds = _prompt_embeds[1:2]
176
  negative_pooled_prompt_embeds = pooled_prompt_embeds[1:2]
177
 
178
  steps = params.steps