Spaces:
Running
Running
File size: 6,292 Bytes
b4884e4 b657b32 b4884e4 b657b32 89357cf b657b32 b4884e4 89357cf b4884e4 89357cf b4884e4 89357cf b4884e4 89357cf b4884e4 89357cf b4884e4 89357cf b4884e4 89357cf b4884e4 b657b32 89357cf b4884e4 89357cf b4884e4 c76ca13 b4884e4 89357cf e66d1a8 b11f498 b4884e4 89357cf b4884e4 c4a7f78 b4884e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os
import shutil
import streamlit as st
from dotenv import load_dotenv
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.storage import LocalFileStore
from langchain.embeddings import CacheBackedEmbeddings
from langchain_groq import ChatGroq
from langchain_core.runnables import RunnablePassthrough
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from streamlit_chat import message
# Load environment variables
load_dotenv()
os.environ['GROQ_API_KEY'] = os.getenv('GROQ_API')
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = os.getenv('LANGSMITH_API')
UPLOAD_DIR = "uploaded_files"
def cleanup_files():
if os.path.isdir(UPLOAD_DIR):
shutil.rmtree(UPLOAD_DIR, ignore_errors=True)
if 'file_handle' in st.session_state:
st.session_state.file_handle.close()
if 'cleanup_done' not in st.session_state:
st.session_state.cleanup_done = False
if not st.session_state.cleanup_done:
cleanup_files()
if not os.path.exists(UPLOAD_DIR):
os.makedirs(UPLOAD_DIR, exist_ok=True)
# Custom CSS for Xailor.ai-like theme with video background
st.markdown(
"""
<style>
body {
margin: 0;
padding: 0;
font-family: 'Arial', sans-serif;
color: #C9D1D9;
}
.main-bg {
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
z-index: -1;
overflow: hidden;
}
.main-bg video {
position: absolute;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
width: 100%;
height: 100%;
object-fit: cover;
}
.stButton button {
background-color: #1F6FEB;
color: white;
border-radius: 8px;
border: none;
padding: 10px 20px;
font-weight: bold;
font-size: 14px;
}
.stButton button:hover {
background-color: #1A4FC5;
}
.stTextInput > div > input {
border: 1px solid #30363D;
background-color: #161B22;
color: #C9D1D9;
border-radius: 6px;
padding: 10px;
}
.stFileUploader > div {
border: 2px dashed #30363D;
background-color: #161B22;
color: #C9D1D9;
border-radius: 6px;
padding: 10px;
}
.header {
display: flex;
align-items: center;
gap: 10px;
padding-top: 50px;
color: #58A6FF;
}
.response-box {
background-color: #161B22;
padding: 10px;
border-radius: 6px;
margin-bottom: 10px;
color: #FFFFFF;
}
</style>
""",
unsafe_allow_html=True
)
# HTML for video background
st.markdown(
"""
<div class="main-bg">
<video autoplay loop muted>
<source src="https://vimeo.com/464431550" type="video/mp4">
</video>
</div>
""",
unsafe_allow_html=True
)
# Xailor.ai-like header without logo
st.markdown(
"""
<div class="header" style="display: flex; align-items: center; gap: 10px;">
<h1 style="font-weight: bold;">Welcome to Xailor AI Chat!</h1>
</div>
""",
unsafe_allow_html=True
)
# Spacer to push chatbot below the header
st.write("<div style='height: 100px;'></div>", unsafe_allow_html=True)
st.title("Chat with your PDF!!")
uploaded_file = st.file_uploader("Upload a file")
if uploaded_file is not None:
file_path = os.path.join(UPLOAD_DIR, uploaded_file.name)
file_path = os.path.abspath(file_path)
with open(file_path, 'wb') as f:
f.write(uploaded_file.getbuffer())
st.write("You're Ready For a Chat with your PDF")
docs = PyPDFLoader(file_path).load_and_split()
embedding = HuggingFaceEmbeddings(
model_name='BAAI/llm-embedder',
)
store = LocalFileStore("./cache/")
cached_embedder = CacheBackedEmbeddings.from_bytes_store(
embedding, store, namespace='embeddings'
)
vector_base = FAISS.from_documents(
docs,
embedding
)
template = '''You are Xailor.AI's friendly chatbot assistant. Your role is to assist users with insightful answers about their pdf, creative writing, and using Xailor.AI . Answer the {question} based only on the provided {context}. After answering the question, recommend Xailor.AI services that may interest the user based on the content of the PDF or the question. Be friendly, creative, and concise. Use a maximum of three sentences for the answer, and add one or two relevant story recommendations with a brief description and a link. If you're unsure about the answer, respond with "I'm not sure about that, but feel free to explore more on Xailor.AI!"'''
prompt = ChatPromptTemplate.from_template(template)
retriever = vector_base.as_retriever()
llm = ChatGroq(
model='mixtral-8x7b-32768',
temperature=0,
)
if 'history' not in st.session_state:
st.session_state.history = []
query = st.text_input("Enter your question", placeholder="Ask something interesting...")
if st.button("Submit!", key="submit_button"):
if query:
chain = (
{'context': retriever, 'question': RunnablePassthrough()}
| prompt | llm | StrOutputParser()
)
answer = chain.invoke(query)
st.session_state.history.append({'question': query, 'answer': answer})
if st.session_state.history:
st.write("### Previous Questions and Answers")
for idx, entry in enumerate(st.session_state.history):
st.markdown(
f"""
<div class="response-box">
<p style="font-weight: bold; color: #58A6FF;">Q{idx + 1}: {entry['question']}</p>
<p style="color: #FFFFFF;">A{idx + 1}: {entry['answer']}</p>
</div>
""",
unsafe_allow_html=True
)
# Reset functionality
if st.button("Reset and Upload a New PDF"):
st.session_state.clear()
st.session_state.cleanup_done = False
st.experimental_rerun()
if st.session_state.cleanup_done:
cleanup_files()
|