Spaces:
Runtime error
Runtime error
File size: 12,046 Bytes
e2881a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import os
os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'")
import PIL.Image
import gradio as gr
import torch
import numpy as np
import cv2
from detectron2.config import get_cfg
from detectron2.data.detection_utils import read_image
import atexit
import bisect
import multiprocessing as mp
from collections import deque
import cv2
import torch
from detectron2.data import MetadataCatalog
from detectron2.engine.defaults import DefaultPredictor
from detectron2.utils.video_visualizer import VideoVisualizer
from detectron2.utils.visualizer import ColorMode, Visualizer
import warnings
warnings.filterwarnings("ignore")
class VisualizationDemo:
def __init__(self, cfg, device, instance_mode=ColorMode.IMAGE, parallel=False):
"""
Args:
cfg (CfgNode):
instance_mode (ColorMode):
parallel (bool): whether to run the model in different processes from visualization.
Useful since the visualization logic can be slow.
"""
self.metadata = MetadataCatalog.get(
cfg.DATASETS.TEST[0] if len(cfg.DATASETS.TEST) else "__unused"
)
self.cpu_device = torch.device("cpu")
self.instance_mode = instance_mode
self.parallel = parallel
if parallel:
num_gpu = torch.cuda.device_count()
print("num_gpu: ", num_gpu)
self.predictor = AsyncPredictor(cfg, num_gpus=num_gpu)
else:
cfg.defrost()
# print("cfg: ", cfg)
cfg.MODEL.DEVICE = device
self.predictor = DefaultPredictor(cfg)
def run_on_image(self, image):
"""
Args:
image (np.ndarray): an image of shape (H, W, C) (in BGR order).
This is the format used by OpenCV.
Returns:
predictions (dict): the output of the model.
vis_output (VisImage): the visualized image output.
"""
vis_output = None
predictions = self.predictor(image)
# Convert image from OpenCV BGR format to Matplotlib RGB format.
image = image[:, :, ::-1]
visualizer = Visualizer(image, self.metadata, instance_mode=self.instance_mode)
if "panoptic_seg" in predictions:
panoptic_seg, segments_info = predictions["panoptic_seg"]
vis_output = visualizer.draw_panoptic_seg_predictions(
panoptic_seg.to(self.cpu_device), segments_info
)
else:
if "sem_seg" in predictions:
vis_output = visualizer.draw_sem_seg(
predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
)
if "instances" in predictions:
instances = predictions["instances"].to(self.cpu_device)
vis_output = visualizer.draw_instance_predictions(predictions=instances)
return predictions, vis_output
def _frame_from_video(self, video):
while video.isOpened():
success, frame = video.read()
if success:
yield frame
else:
break
def run_on_video(self, video):
"""
Visualizes predictions on frames of the input video.
Args:
video (cv2.VideoCapture): a :class:`VideoCapture` object, whose source can be
either a webcam or a video file.
Yields:
ndarray: BGR visualizations of each video frame.
"""
video_visualizer = VideoVisualizer(self.metadata, self.instance_mode)
def process_predictions(frame, predictions):
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if "panoptic_seg" in predictions:
panoptic_seg, segments_info = predictions["panoptic_seg"]
vis_frame = video_visualizer.draw_panoptic_seg_predictions(
frame, panoptic_seg.to(self.cpu_device), segments_info
)
elif "instances" in predictions:
predictions = predictions["instances"].to(self.cpu_device)
vis_frame = video_visualizer.draw_instance_predictions(frame, predictions)
elif "sem_seg" in predictions:
vis_frame = video_visualizer.draw_sem_seg(
frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
)
# Converts Matplotlib RGB format to OpenCV BGR format
vis_frame = cv2.cvtColor(vis_frame.get_image(), cv2.COLOR_RGB2BGR)
return vis_frame
frame_gen = self._frame_from_video(video)
if self.parallel:
buffer_size = self.predictor.default_buffer_size
frame_data = deque()
for cnt, frame in enumerate(frame_gen):
frame_data.append(frame)
self.predictor.put(frame)
if cnt >= buffer_size:
frame = frame_data.popleft()
predictions = self.predictor.get()
yield process_predictions(frame, predictions)
while len(frame_data):
frame = frame_data.popleft()
predictions = self.predictor.get()
yield process_predictions(frame, predictions)
else:
for frame in frame_gen:
yield process_predictions(frame, self.predictor(frame))
class AsyncPredictor:
"""
A predictor that runs the model asynchronously, possibly on >1 GPUs.
Because rendering the visualization takes considerably amount of time,
this helps improve throughput a little bit when rendering videos.
"""
class _StopToken:
pass
class _PredictWorker(mp.Process):
def __init__(self, cfg, task_queue, result_queue):
self.cfg = cfg
self.task_queue = task_queue
self.result_queue = result_queue
super().__init__()
def run(self):
predictor = DefaultPredictor(self.cfg)
while True:
task = self.task_queue.get()
if isinstance(task, AsyncPredictor._StopToken):
break
idx, data = task
result = predictor(data)
self.result_queue.put((idx, result))
def __init__(self, cfg, num_gpus: int = 1):
"""
Args:
cfg (CfgNode):
num_gpus (int): if 0, will run on CPU
"""
num_workers = max(num_gpus, 1)
self.task_queue = mp.Queue(maxsize=num_workers * 3)
self.result_queue = mp.Queue(maxsize=num_workers * 3)
self.procs = []
for gpuid in range(max(num_gpus, 1)):
cfg = cfg.clone()
cfg.defrost()
cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu"
self.procs.append(
AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue)
)
self.put_idx = 0
self.get_idx = 0
self.result_rank = []
self.result_data = []
for p in self.procs:
p.start()
atexit.register(self.shutdown)
def put(self, image):
self.put_idx += 1
self.task_queue.put((self.put_idx, image))
def get(self):
self.get_idx += 1 # the index needed for this request
if len(self.result_rank) and self.result_rank[0] == self.get_idx:
res = self.result_data[0]
del self.result_data[0], self.result_rank[0]
return res
while True:
# make sure the results are returned in the correct order
idx, res = self.result_queue.get()
if idx == self.get_idx:
return res
insert = bisect.bisect(self.result_rank, idx)
self.result_rank.insert(insert, idx)
self.result_data.insert(insert, res)
def __len__(self):
return self.put_idx - self.get_idx
def __call__(self, image):
self.put(image)
return self.get()
def shutdown(self):
for _ in self.procs:
self.task_queue.put(AsyncPredictor._StopToken())
@property
def default_buffer_size(self):
return len(self.procs) * 5
detectron2_model_list = {
"COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x":{
"config_file": "configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml",
"ckpts": "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl"
},
}
# def dtectron2_instance_inference(image, config_file, ckpts, device):
# cfg = get_cfg()
# cfg.merge_from_file(config_file)
# cfg.MODEL.WEIGHTS = ckpts
# cfg.MODEL.DEVICE = "cpu"
# cfg.output = "output_img.jpg"
# visualization_demo = VisualizationDemo(cfg, device=device)
# if image:
# intput_path = "intput_img.jpg"
# image.save(intput_path)
# image = read_image(intput_path, format="BGR")
# predictions, vis_output = visualization_demo.run_on_image(image)
# output_image = PIL.Image.fromarray(vis_output.get_image())
# # print("predictions: ", predictions)
# return output_image
def dtectron2_instance_inference(image, input_model_name, device):
cfg = get_cfg()
config_file = detectron2_model_list[input_model_name]["config_file"]
ckpts = detectron2_model_list[input_model_name]["ckpts"]
cfg.merge_from_file(config_file)
cfg.MODEL.WEIGHTS = ckpts
cfg.MODEL.DEVICE = "cpu"
cfg.output = "output_img.jpg"
visualization_demo = VisualizationDemo(cfg, device=device)
if image:
intput_path = "intput_img.jpg"
image.save(intput_path)
image = read_image(intput_path, format="BGR")
predictions, vis_output = visualization_demo.run_on_image(image)
output_image = PIL.Image.fromarray(vis_output.get_image())
# print("predictions: ", predictions)
return output_image
def download_test_img():
# Images
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/59380685/268517006-d8d4d3b3-964a-4f4d-8458-18c7eb75a4f2.jpg',
'000000502136.jpg')
if __name__ == '__main__':
input_image = gr.inputs.Image(type='pil', label='Input Image')
input_model_name = gr.inputs.Dropdown(list(detectron2_model_list.keys()), label="Model Name", default="COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x")
input_device = gr.inputs.Dropdown(["cpu", "cuda"], label="Devices", default="cpu")
output_image = gr.outputs.Image(type='pil', label='Output Image')
output_predictions = gr.outputs.Textbox(type='text', label='Output Predictions')
title = "Detectron2 web demo"
description = "<div align='center'><img src='https://raw.githubusercontent.com/facebookresearch/detectron2/8c4a333ceb8df05348759443d0206302485890e0/.github/Detectron2-Logo-Horz.svg' width='450''/><div>" \
"<p style='text-align: center'><a href='https://github.com/facebookresearch/detectron2'>Detectron2</a> Detectron2 是 Facebook AI Research 的下一代库,提供最先进的检测和分割算法。它是Detectron 和maskrcnn-benchmark的后继者 。它支持 Facebook 中的许多计算机视觉研究项目和生产应用。" \
"Detectron2 is a platform for object detection, segmentation and other visual recognition tasks..</p>"
article = "<p style='text-align: center'><a href='https://github.com/facebookresearch/detectron2'>Detectron2</a></p>" \
"<p style='text-align: center'><a href='https://github.com/facebookresearch/detectron2'>gradio build by gatilin</a></a></p>"
download_test_img()
examples = [["000000502136.jpg", "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x", "cpu"]]
gr.Interface(fn=dtectron2_instance_inference,
inputs=[input_image, input_model_name, input_device],
outputs=output_image,examples=examples,
title=title, description=description, article=article).launch()
|