Spaces:
Runtime error
Runtime error
isLinXu
commited on
Commit
•
4baf486
1
Parent(s):
e2881a8
update
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- configs/Base-RCNN-C4.yaml +18 -0
- configs/Base-RCNN-DilatedC5.yaml +31 -0
- configs/Base-RCNN-FPN.yaml +42 -0
- configs/Base-RetinaNet.yaml +25 -0
- configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml +17 -0
- configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml +9 -0
- configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml +9 -0
- configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml +9 -0
- configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml +6 -0
- configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml +9 -0
- configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml +6 -0
- configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml +9 -0
- configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml +6 -0
- configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml +9 -0
- configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml +13 -0
- configs/COCO-Detection/fcos_R_50_FPN_1x.py +11 -0
- configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml +8 -0
- configs/COCO-Detection/retinanet_R_50_FPN_1x.py +11 -0
- configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml +5 -0
- configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml +8 -0
- configs/COCO-Detection/rpn_R_50_C4_1x.yaml +10 -0
- configs/COCO-Detection/rpn_R_50_FPN_1x.yaml +9 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml +9 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml +9 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml +9 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.py +8 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml +6 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml +9 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml +6 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml +9 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.py +8 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml +6 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x_giou.yaml +12 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml +9 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml +13 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_regnetx_4gf_dds_fpn_1x.py +34 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_regnety_4gf_dds_fpn_1x.py +35 -0
- configs/COCO-Keypoints/Base-Keypoint-RCNN-FPN.yaml +15 -0
- configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml +8 -0
- configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.py +8 -0
- configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml +5 -0
- configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml +8 -0
- configs/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml +12 -0
- configs/COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml +11 -0
- configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml +8 -0
- configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.py +8 -0
- configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml +5 -0
- configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml +8 -0
- configs/Cityscapes/mask_rcnn_R_50_FPN.yaml +27 -0
- configs/Detectron1-Comparisons/README.md +84 -0
configs/Base-RCNN-C4.yaml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
META_ARCHITECTURE: "GeneralizedRCNN"
|
3 |
+
RPN:
|
4 |
+
PRE_NMS_TOPK_TEST: 6000
|
5 |
+
POST_NMS_TOPK_TEST: 1000
|
6 |
+
ROI_HEADS:
|
7 |
+
NAME: "Res5ROIHeads"
|
8 |
+
DATASETS:
|
9 |
+
TRAIN: ("coco_2017_train",)
|
10 |
+
TEST: ("coco_2017_val",)
|
11 |
+
SOLVER:
|
12 |
+
IMS_PER_BATCH: 16
|
13 |
+
BASE_LR: 0.02
|
14 |
+
STEPS: (60000, 80000)
|
15 |
+
MAX_ITER: 90000
|
16 |
+
INPUT:
|
17 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
18 |
+
VERSION: 2
|
configs/Base-RCNN-DilatedC5.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
META_ARCHITECTURE: "GeneralizedRCNN"
|
3 |
+
RESNETS:
|
4 |
+
OUT_FEATURES: ["res5"]
|
5 |
+
RES5_DILATION: 2
|
6 |
+
RPN:
|
7 |
+
IN_FEATURES: ["res5"]
|
8 |
+
PRE_NMS_TOPK_TEST: 6000
|
9 |
+
POST_NMS_TOPK_TEST: 1000
|
10 |
+
ROI_HEADS:
|
11 |
+
NAME: "StandardROIHeads"
|
12 |
+
IN_FEATURES: ["res5"]
|
13 |
+
ROI_BOX_HEAD:
|
14 |
+
NAME: "FastRCNNConvFCHead"
|
15 |
+
NUM_FC: 2
|
16 |
+
POOLER_RESOLUTION: 7
|
17 |
+
ROI_MASK_HEAD:
|
18 |
+
NAME: "MaskRCNNConvUpsampleHead"
|
19 |
+
NUM_CONV: 4
|
20 |
+
POOLER_RESOLUTION: 14
|
21 |
+
DATASETS:
|
22 |
+
TRAIN: ("coco_2017_train",)
|
23 |
+
TEST: ("coco_2017_val",)
|
24 |
+
SOLVER:
|
25 |
+
IMS_PER_BATCH: 16
|
26 |
+
BASE_LR: 0.02
|
27 |
+
STEPS: (60000, 80000)
|
28 |
+
MAX_ITER: 90000
|
29 |
+
INPUT:
|
30 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
31 |
+
VERSION: 2
|
configs/Base-RCNN-FPN.yaml
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
META_ARCHITECTURE: "GeneralizedRCNN"
|
3 |
+
BACKBONE:
|
4 |
+
NAME: "build_resnet_fpn_backbone"
|
5 |
+
RESNETS:
|
6 |
+
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
|
7 |
+
FPN:
|
8 |
+
IN_FEATURES: ["res2", "res3", "res4", "res5"]
|
9 |
+
ANCHOR_GENERATOR:
|
10 |
+
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
|
11 |
+
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
|
12 |
+
RPN:
|
13 |
+
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
|
14 |
+
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
|
15 |
+
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
|
16 |
+
# Detectron1 uses 2000 proposals per-batch,
|
17 |
+
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
|
18 |
+
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
|
19 |
+
POST_NMS_TOPK_TRAIN: 1000
|
20 |
+
POST_NMS_TOPK_TEST: 1000
|
21 |
+
ROI_HEADS:
|
22 |
+
NAME: "StandardROIHeads"
|
23 |
+
IN_FEATURES: ["p2", "p3", "p4", "p5"]
|
24 |
+
ROI_BOX_HEAD:
|
25 |
+
NAME: "FastRCNNConvFCHead"
|
26 |
+
NUM_FC: 2
|
27 |
+
POOLER_RESOLUTION: 7
|
28 |
+
ROI_MASK_HEAD:
|
29 |
+
NAME: "MaskRCNNConvUpsampleHead"
|
30 |
+
NUM_CONV: 4
|
31 |
+
POOLER_RESOLUTION: 14
|
32 |
+
DATASETS:
|
33 |
+
TRAIN: ("coco_2017_train",)
|
34 |
+
TEST: ("coco_2017_val",)
|
35 |
+
SOLVER:
|
36 |
+
IMS_PER_BATCH: 16
|
37 |
+
BASE_LR: 0.02
|
38 |
+
STEPS: (60000, 80000)
|
39 |
+
MAX_ITER: 90000
|
40 |
+
INPUT:
|
41 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
42 |
+
VERSION: 2
|
configs/Base-RetinaNet.yaml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
META_ARCHITECTURE: "RetinaNet"
|
3 |
+
BACKBONE:
|
4 |
+
NAME: "build_retinanet_resnet_fpn_backbone"
|
5 |
+
RESNETS:
|
6 |
+
OUT_FEATURES: ["res3", "res4", "res5"]
|
7 |
+
ANCHOR_GENERATOR:
|
8 |
+
SIZES: !!python/object/apply:eval ["[[x, x * 2**(1.0/3), x * 2**(2.0/3) ] for x in [32, 64, 128, 256, 512 ]]"]
|
9 |
+
FPN:
|
10 |
+
IN_FEATURES: ["res3", "res4", "res5"]
|
11 |
+
RETINANET:
|
12 |
+
IOU_THRESHOLDS: [0.4, 0.5]
|
13 |
+
IOU_LABELS: [0, -1, 1]
|
14 |
+
SMOOTH_L1_LOSS_BETA: 0.0
|
15 |
+
DATASETS:
|
16 |
+
TRAIN: ("coco_2017_train",)
|
17 |
+
TEST: ("coco_2017_val",)
|
18 |
+
SOLVER:
|
19 |
+
IMS_PER_BATCH: 16
|
20 |
+
BASE_LR: 0.01 # Note that RetinaNet uses a different default learning rate
|
21 |
+
STEPS: (60000, 80000)
|
22 |
+
MAX_ITER: 90000
|
23 |
+
INPUT:
|
24 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
25 |
+
VERSION: 2
|
configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
LOAD_PROPOSALS: True
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50
|
8 |
+
PROPOSAL_GENERATOR:
|
9 |
+
NAME: "PrecomputedProposals"
|
10 |
+
DATASETS:
|
11 |
+
TRAIN: ("coco_2017_train",)
|
12 |
+
PROPOSAL_FILES_TRAIN: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_train_box_proposals_21bc3a.pkl", )
|
13 |
+
TEST: ("coco_2017_val",)
|
14 |
+
PROPOSAL_FILES_TEST: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
|
15 |
+
DATALOADER:
|
16 |
+
# proposals are part of the dataset_dicts, and take a lot of RAM
|
17 |
+
NUM_WORKERS: 2
|
configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 101
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 101
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 101
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: False
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
MASK_ON: False
|
4 |
+
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
5 |
+
PIXEL_STD: [57.375, 57.120, 58.395]
|
6 |
+
RESNETS:
|
7 |
+
STRIDE_IN_1X1: False # this is a C2 model
|
8 |
+
NUM_GROUPS: 32
|
9 |
+
WIDTH_PER_GROUP: 8
|
10 |
+
DEPTH: 101
|
11 |
+
SOLVER:
|
12 |
+
STEPS: (210000, 250000)
|
13 |
+
MAX_ITER: 270000
|
configs/COCO-Detection/fcos_R_50_FPN_1x.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..common.optim import SGD as optimizer
|
2 |
+
from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier
|
3 |
+
from ..common.data.coco import dataloader
|
4 |
+
from ..common.models.fcos import model
|
5 |
+
from ..common.train import train
|
6 |
+
|
7 |
+
dataloader.train.mapper.use_instance_mask = False
|
8 |
+
optimizer.lr = 0.01
|
9 |
+
|
10 |
+
model.backbone.bottom_up.freeze_at = 2
|
11 |
+
train.init_checkpoint = "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RetinaNet.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
+
RESNETS:
|
5 |
+
DEPTH: 101
|
6 |
+
SOLVER:
|
7 |
+
STEPS: (210000, 250000)
|
8 |
+
MAX_ITER: 270000
|
configs/COCO-Detection/retinanet_R_50_FPN_1x.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..common.optim import SGD as optimizer
|
2 |
+
from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier
|
3 |
+
from ..common.data.coco import dataloader
|
4 |
+
from ..common.models.retinanet import model
|
5 |
+
from ..common.train import train
|
6 |
+
|
7 |
+
dataloader.train.mapper.use_instance_mask = False
|
8 |
+
model.backbone.bottom_up.freeze_at = 2
|
9 |
+
optimizer.lr = 0.01
|
10 |
+
|
11 |
+
train.init_checkpoint = "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RetinaNet.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
RESNETS:
|
5 |
+
DEPTH: 50
|
configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RetinaNet.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
RESNETS:
|
5 |
+
DEPTH: 50
|
6 |
+
SOLVER:
|
7 |
+
STEPS: (210000, 250000)
|
8 |
+
MAX_ITER: 270000
|
configs/COCO-Detection/rpn_R_50_C4_1x.yaml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
+
MODEL:
|
3 |
+
META_ARCHITECTURE: "ProposalNetwork"
|
4 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
5 |
+
MASK_ON: False
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50
|
8 |
+
RPN:
|
9 |
+
PRE_NMS_TOPK_TEST: 12000
|
10 |
+
POST_NMS_TOPK_TEST: 2000
|
configs/COCO-Detection/rpn_R_50_FPN_1x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
META_ARCHITECTURE: "ProposalNetwork"
|
4 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
5 |
+
MASK_ON: False
|
6 |
+
RESNETS:
|
7 |
+
DEPTH: 50
|
8 |
+
RPN:
|
9 |
+
POST_NMS_TOPK_TEST: 2000
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 101
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 101
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 101
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..common.train import train
|
2 |
+
from ..common.optim import SGD as optimizer
|
3 |
+
from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier
|
4 |
+
from ..common.data.coco import dataloader
|
5 |
+
from ..common.models.mask_rcnn_c4 import model
|
6 |
+
|
7 |
+
model.backbone.freeze_at = 2
|
8 |
+
train.init_checkpoint = "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..common.optim import SGD as optimizer
|
2 |
+
from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier
|
3 |
+
from ..common.data.coco import dataloader
|
4 |
+
from ..common.models.mask_rcnn_fpn import model
|
5 |
+
from ..common.train import train
|
6 |
+
|
7 |
+
model.backbone.bottom_up.freeze_at = 2
|
8 |
+
train.init_checkpoint = "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x_giou.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
7 |
+
RPN:
|
8 |
+
BBOX_REG_LOSS_TYPE: "giou"
|
9 |
+
BBOX_REG_LOSS_WEIGHT: 2.0
|
10 |
+
ROI_BOX_HEAD:
|
11 |
+
BBOX_REG_LOSS_TYPE: "giou"
|
12 |
+
BBOX_REG_LOSS_WEIGHT: 10.0
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
MASK_ON: True
|
5 |
+
RESNETS:
|
6 |
+
DEPTH: 50
|
7 |
+
SOLVER:
|
8 |
+
STEPS: (210000, 250000)
|
9 |
+
MAX_ITER: 270000
|
configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
MASK_ON: True
|
4 |
+
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
5 |
+
PIXEL_STD: [57.375, 57.120, 58.395]
|
6 |
+
RESNETS:
|
7 |
+
STRIDE_IN_1X1: False # this is a C2 model
|
8 |
+
NUM_GROUPS: 32
|
9 |
+
WIDTH_PER_GROUP: 8
|
10 |
+
DEPTH: 101
|
11 |
+
SOLVER:
|
12 |
+
STEPS: (210000, 250000)
|
13 |
+
MAX_ITER: 270000
|
configs/COCO-InstanceSegmentation/mask_rcnn_regnetx_4gf_dds_fpn_1x.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..common.optim import SGD as optimizer
|
2 |
+
from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier
|
3 |
+
from ..common.data.coco import dataloader
|
4 |
+
from ..common.models.mask_rcnn_fpn import model
|
5 |
+
from ..common.train import train
|
6 |
+
|
7 |
+
from detectron2.config import LazyCall as L
|
8 |
+
from detectron2.modeling.backbone import RegNet
|
9 |
+
from detectron2.modeling.backbone.regnet import SimpleStem, ResBottleneckBlock
|
10 |
+
|
11 |
+
|
12 |
+
# Replace default ResNet with RegNetX-4GF from the DDS paper. Config source:
|
13 |
+
# https://github.com/facebookresearch/pycls/blob/2c152a6e5d913e898cca4f0a758f41e6b976714d/configs/dds_baselines/regnetx/RegNetX-4.0GF_dds_8gpu.yaml#L4-L9 # noqa
|
14 |
+
model.backbone.bottom_up = L(RegNet)(
|
15 |
+
stem_class=SimpleStem,
|
16 |
+
stem_width=32,
|
17 |
+
block_class=ResBottleneckBlock,
|
18 |
+
depth=23,
|
19 |
+
w_a=38.65,
|
20 |
+
w_0=96,
|
21 |
+
w_m=2.43,
|
22 |
+
group_width=40,
|
23 |
+
freeze_at=2,
|
24 |
+
norm="FrozenBN",
|
25 |
+
out_features=["s1", "s2", "s3", "s4"],
|
26 |
+
)
|
27 |
+
model.pixel_std = [57.375, 57.120, 58.395]
|
28 |
+
|
29 |
+
optimizer.weight_decay = 5e-5
|
30 |
+
train.init_checkpoint = (
|
31 |
+
"https://dl.fbaipublicfiles.com/pycls/dds_baselines/160906383/RegNetX-4.0GF_dds_8gpu.pyth"
|
32 |
+
)
|
33 |
+
# RegNets benefit from enabling cudnn benchmark mode
|
34 |
+
train.cudnn_benchmark = True
|
configs/COCO-InstanceSegmentation/mask_rcnn_regnety_4gf_dds_fpn_1x.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..common.optim import SGD as optimizer
|
2 |
+
from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier
|
3 |
+
from ..common.data.coco import dataloader
|
4 |
+
from ..common.models.mask_rcnn_fpn import model
|
5 |
+
from ..common.train import train
|
6 |
+
|
7 |
+
from detectron2.config import LazyCall as L
|
8 |
+
from detectron2.modeling.backbone import RegNet
|
9 |
+
from detectron2.modeling.backbone.regnet import SimpleStem, ResBottleneckBlock
|
10 |
+
|
11 |
+
|
12 |
+
# Replace default ResNet with RegNetY-4GF from the DDS paper. Config source:
|
13 |
+
# https://github.com/facebookresearch/pycls/blob/2c152a6e5d913e898cca4f0a758f41e6b976714d/configs/dds_baselines/regnety/RegNetY-4.0GF_dds_8gpu.yaml#L4-L10 # noqa
|
14 |
+
model.backbone.bottom_up = L(RegNet)(
|
15 |
+
stem_class=SimpleStem,
|
16 |
+
stem_width=32,
|
17 |
+
block_class=ResBottleneckBlock,
|
18 |
+
depth=22,
|
19 |
+
w_a=31.41,
|
20 |
+
w_0=96,
|
21 |
+
w_m=2.24,
|
22 |
+
group_width=64,
|
23 |
+
se_ratio=0.25,
|
24 |
+
freeze_at=2,
|
25 |
+
norm="FrozenBN",
|
26 |
+
out_features=["s1", "s2", "s3", "s4"],
|
27 |
+
)
|
28 |
+
model.pixel_std = [57.375, 57.120, 58.395]
|
29 |
+
|
30 |
+
optimizer.weight_decay = 5e-5
|
31 |
+
train.init_checkpoint = (
|
32 |
+
"https://dl.fbaipublicfiles.com/pycls/dds_baselines/160906838/RegNetY-4.0GF_dds_8gpu.pyth"
|
33 |
+
)
|
34 |
+
# RegNets benefit from enabling cudnn benchmark mode
|
35 |
+
train.cudnn_benchmark = True
|
configs/COCO-Keypoints/Base-Keypoint-RCNN-FPN.yaml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
KEYPOINT_ON: True
|
4 |
+
ROI_HEADS:
|
5 |
+
NUM_CLASSES: 1
|
6 |
+
ROI_BOX_HEAD:
|
7 |
+
SMOOTH_L1_BETA: 0.5 # Keypoint AP degrades (though box AP improves) when using plain L1 loss
|
8 |
+
RPN:
|
9 |
+
# Detectron1 uses 2000 proposals per-batch, but this option is per-image in detectron2.
|
10 |
+
# 1000 proposals per-image is found to hurt box AP.
|
11 |
+
# Therefore we increase it to 1500 per-image.
|
12 |
+
POST_NMS_TOPK_TRAIN: 1500
|
13 |
+
DATASETS:
|
14 |
+
TRAIN: ("keypoints_coco_2017_train",)
|
15 |
+
TEST: ("keypoints_coco_2017_val",)
|
configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
+
RESNETS:
|
5 |
+
DEPTH: 101
|
6 |
+
SOLVER:
|
7 |
+
STEPS: (210000, 250000)
|
8 |
+
MAX_ITER: 270000
|
configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..common.optim import SGD as optimizer
|
2 |
+
from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier
|
3 |
+
from ..common.data.coco_keypoint import dataloader
|
4 |
+
from ..common.models.keypoint_rcnn_fpn import model
|
5 |
+
from ..common.train import train
|
6 |
+
|
7 |
+
model.backbone.bottom_up.freeze_at = 2
|
8 |
+
train.init_checkpoint = "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
RESNETS:
|
5 |
+
DEPTH: 50
|
configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
RESNETS:
|
5 |
+
DEPTH: 50
|
6 |
+
SOLVER:
|
7 |
+
STEPS: (210000, 250000)
|
8 |
+
MAX_ITER: 270000
|
configs/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
4 |
+
PIXEL_STD: [57.375, 57.120, 58.395]
|
5 |
+
RESNETS:
|
6 |
+
STRIDE_IN_1X1: False # this is a C2 model
|
7 |
+
NUM_GROUPS: 32
|
8 |
+
WIDTH_PER_GROUP: 8
|
9 |
+
DEPTH: 101
|
10 |
+
SOLVER:
|
11 |
+
STEPS: (210000, 250000)
|
12 |
+
MAX_ITER: 270000
|
configs/COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
META_ARCHITECTURE: "PanopticFPN"
|
4 |
+
MASK_ON: True
|
5 |
+
SEM_SEG_HEAD:
|
6 |
+
LOSS_WEIGHT: 0.5
|
7 |
+
DATASETS:
|
8 |
+
TRAIN: ("coco_2017_train_panoptic_separated",)
|
9 |
+
TEST: ("coco_2017_val_panoptic_separated",)
|
10 |
+
DATALOADER:
|
11 |
+
FILTER_EMPTY_ANNOTATIONS: False
|
configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-Panoptic-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
+
RESNETS:
|
5 |
+
DEPTH: 101
|
6 |
+
SOLVER:
|
7 |
+
STEPS: (210000, 250000)
|
8 |
+
MAX_ITER: 270000
|
configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..common.optim import SGD as optimizer
|
2 |
+
from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier
|
3 |
+
from ..common.data.coco_panoptic_separated import dataloader
|
4 |
+
from ..common.models.panoptic_fpn import model
|
5 |
+
from ..common.train import train
|
6 |
+
|
7 |
+
model.backbone.bottom_up.freeze_at = 2
|
8 |
+
train.init_checkpoint = "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-Panoptic-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
RESNETS:
|
5 |
+
DEPTH: 50
|
configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-Panoptic-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
RESNETS:
|
5 |
+
DEPTH: 50
|
6 |
+
SOLVER:
|
7 |
+
STEPS: (210000, 250000)
|
8 |
+
MAX_ITER: 270000
|
configs/Cityscapes/mask_rcnn_R_50_FPN.yaml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
+
MODEL:
|
3 |
+
# WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
+
# For better, more stable performance initialize from COCO
|
5 |
+
WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl"
|
6 |
+
MASK_ON: True
|
7 |
+
ROI_HEADS:
|
8 |
+
NUM_CLASSES: 8
|
9 |
+
# This is similar to the setting used in Mask R-CNN paper, Appendix A
|
10 |
+
# But there are some differences, e.g., we did not initialize the output
|
11 |
+
# layer using the corresponding classes from COCO
|
12 |
+
INPUT:
|
13 |
+
MIN_SIZE_TRAIN: (800, 832, 864, 896, 928, 960, 992, 1024)
|
14 |
+
MIN_SIZE_TRAIN_SAMPLING: "choice"
|
15 |
+
MIN_SIZE_TEST: 1024
|
16 |
+
MAX_SIZE_TRAIN: 2048
|
17 |
+
MAX_SIZE_TEST: 2048
|
18 |
+
DATASETS:
|
19 |
+
TRAIN: ("cityscapes_fine_instance_seg_train",)
|
20 |
+
TEST: ("cityscapes_fine_instance_seg_val",)
|
21 |
+
SOLVER:
|
22 |
+
BASE_LR: 0.01
|
23 |
+
STEPS: (18000,)
|
24 |
+
MAX_ITER: 24000
|
25 |
+
IMS_PER_BATCH: 8
|
26 |
+
TEST:
|
27 |
+
EVAL_PERIOD: 8000
|
configs/Detectron1-Comparisons/README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Detectron2 model zoo's experimental settings and a few implementation details are different from Detectron.
|
3 |
+
|
4 |
+
The differences in implementation details are shared in
|
5 |
+
[Compatibility with Other Libraries](../../docs/notes/compatibility.md).
|
6 |
+
|
7 |
+
The differences in model zoo's experimental settings include:
|
8 |
+
* Use scale augmentation during training. This improves AP with lower training cost.
|
9 |
+
* Use L1 loss instead of smooth L1 loss for simplicity. This sometimes improves box AP but may
|
10 |
+
affect other AP.
|
11 |
+
* Use `POOLER_SAMPLING_RATIO=0` instead of 2. This does not significantly affect AP.
|
12 |
+
* Use `ROIAlignV2`. This does not significantly affect AP.
|
13 |
+
|
14 |
+
In this directory, we provide a few configs that __do not__ have the above changes.
|
15 |
+
They mimic Detectron's behavior as close as possible,
|
16 |
+
and provide a fair comparison of accuracy and speed against Detectron.
|
17 |
+
|
18 |
+
<!--
|
19 |
+
./gen_html_table.py --config 'Detectron1-Comparisons/*.yaml' --name "Faster R-CNN" "Keypoint R-CNN" "Mask R-CNN" --fields lr_sched train_speed inference_speed mem box_AP mask_AP keypoint_AP --base-dir ../../../configs/Detectron1-Comparisons
|
20 |
+
-->
|
21 |
+
|
22 |
+
|
23 |
+
<table><tbody>
|
24 |
+
<!-- START TABLE -->
|
25 |
+
<!-- TABLE HEADER -->
|
26 |
+
<th valign="bottom">Name</th>
|
27 |
+
<th valign="bottom">lr<br/>sched</th>
|
28 |
+
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
29 |
+
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
30 |
+
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
31 |
+
<th valign="bottom">box<br/>AP</th>
|
32 |
+
<th valign="bottom">mask<br/>AP</th>
|
33 |
+
<th valign="bottom">kp.<br/>AP</th>
|
34 |
+
<th valign="bottom">model id</th>
|
35 |
+
<th valign="bottom">download</th>
|
36 |
+
<!-- TABLE BODY -->
|
37 |
+
<!-- ROW: faster_rcnn_R_50_FPN_noaug_1x -->
|
38 |
+
<tr><td align="left"><a href="faster_rcnn_R_50_FPN_noaug_1x.yaml">Faster R-CNN</a></td>
|
39 |
+
<td align="center">1x</td>
|
40 |
+
<td align="center">0.219</td>
|
41 |
+
<td align="center">0.038</td>
|
42 |
+
<td align="center">3.1</td>
|
43 |
+
<td align="center">36.9</td>
|
44 |
+
<td align="center"></td>
|
45 |
+
<td align="center"></td>
|
46 |
+
<td align="center">137781054</td>
|
47 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x/137781054/model_final_7ab50c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x/137781054/metrics.json">metrics</a></td>
|
48 |
+
</tr>
|
49 |
+
<!-- ROW: keypoint_rcnn_R_50_FPN_1x -->
|
50 |
+
<tr><td align="left"><a href="keypoint_rcnn_R_50_FPN_1x.yaml">Keypoint R-CNN</a></td>
|
51 |
+
<td align="center">1x</td>
|
52 |
+
<td align="center">0.313</td>
|
53 |
+
<td align="center">0.071</td>
|
54 |
+
<td align="center">5.0</td>
|
55 |
+
<td align="center">53.1</td>
|
56 |
+
<td align="center"></td>
|
57 |
+
<td align="center">64.2</td>
|
58 |
+
<td align="center">137781195</td>
|
59 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x/137781195/model_final_cce136.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x/137781195/metrics.json">metrics</a></td>
|
60 |
+
</tr>
|
61 |
+
<!-- ROW: mask_rcnn_R_50_FPN_noaug_1x -->
|
62 |
+
<tr><td align="left"><a href="mask_rcnn_R_50_FPN_noaug_1x.yaml">Mask R-CNN</a></td>
|
63 |
+
<td align="center">1x</td>
|
64 |
+
<td align="center">0.273</td>
|
65 |
+
<td align="center">0.043</td>
|
66 |
+
<td align="center">3.4</td>
|
67 |
+
<td align="center">37.8</td>
|
68 |
+
<td align="center">34.9</td>
|
69 |
+
<td align="center"></td>
|
70 |
+
<td align="center">137781281</td>
|
71 |
+
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x/137781281/model_final_62ca52.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x/137781281/metrics.json">metrics</a></td>
|
72 |
+
</tr>
|
73 |
+
</tbody></table>
|
74 |
+
|
75 |
+
## Comparisons:
|
76 |
+
|
77 |
+
* Faster R-CNN: Detectron's AP is 36.7, similar to ours.
|
78 |
+
* Keypoint R-CNN: Detectron's AP is box 53.6, keypoint 64.2. Fixing a Detectron's
|
79 |
+
[bug](https://github.com/facebookresearch/Detectron/issues/459) lead to a drop in box AP, and can be
|
80 |
+
compensated back by some parameter tuning.
|
81 |
+
* Mask R-CNN: Detectron's AP is box 37.7, mask 33.9. We're 1 AP better in mask AP, due to more correct implementation.
|
82 |
+
See [this article](https://ppwwyyxx.com/blog/2021/Where-are-Pixels/) for details.
|
83 |
+
|
84 |
+
For speed comparison, see [benchmarks](https://detectron2.readthedocs.io/notes/benchmarks.html).
|