import os os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'") import PIL.Image import gradio as gr import torch import numpy as np import cv2 from detectron2.config import get_cfg from detectron2.data.detection_utils import read_image import atexit import bisect import multiprocessing as mp from collections import deque import cv2 import torch from detectron2.data import MetadataCatalog from detectron2.engine.defaults import DefaultPredictor from detectron2.utils.video_visualizer import VideoVisualizer from detectron2.utils.visualizer import ColorMode, Visualizer import warnings warnings.filterwarnings("ignore") class VisualizationDemo: def __init__(self, cfg, device, instance_mode=ColorMode.IMAGE, parallel=False): """ Args: cfg (CfgNode): instance_mode (ColorMode): parallel (bool): whether to run the model in different processes from visualization. Useful since the visualization logic can be slow. """ self.metadata = MetadataCatalog.get( cfg.DATASETS.TEST[0] if len(cfg.DATASETS.TEST) else "__unused" ) self.cpu_device = torch.device("cpu") self.instance_mode = instance_mode self.parallel = parallel if parallel: num_gpu = torch.cuda.device_count() print("num_gpu: ", num_gpu) self.predictor = AsyncPredictor(cfg, num_gpus=num_gpu) else: cfg.defrost() # print("cfg: ", cfg) cfg.MODEL.DEVICE = device self.predictor = DefaultPredictor(cfg) def run_on_image(self, image): """ Args: image (np.ndarray): an image of shape (H, W, C) (in BGR order). This is the format used by OpenCV. Returns: predictions (dict): the output of the model. vis_output (VisImage): the visualized image output. """ vis_output = None predictions = self.predictor(image) # Convert image from OpenCV BGR format to Matplotlib RGB format. image = image[:, :, ::-1] visualizer = Visualizer(image, self.metadata, instance_mode=self.instance_mode) if "panoptic_seg" in predictions: panoptic_seg, segments_info = predictions["panoptic_seg"] vis_output = visualizer.draw_panoptic_seg_predictions( panoptic_seg.to(self.cpu_device), segments_info ) else: if "sem_seg" in predictions: vis_output = visualizer.draw_sem_seg( predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) ) if "instances" in predictions: instances = predictions["instances"].to(self.cpu_device) vis_output = visualizer.draw_instance_predictions(predictions=instances) return predictions, vis_output def _frame_from_video(self, video): while video.isOpened(): success, frame = video.read() if success: yield frame else: break def run_on_video(self, video): """ Visualizes predictions on frames of the input video. Args: video (cv2.VideoCapture): a :class:`VideoCapture` object, whose source can be either a webcam or a video file. Yields: ndarray: BGR visualizations of each video frame. """ video_visualizer = VideoVisualizer(self.metadata, self.instance_mode) def process_predictions(frame, predictions): frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) if "panoptic_seg" in predictions: panoptic_seg, segments_info = predictions["panoptic_seg"] vis_frame = video_visualizer.draw_panoptic_seg_predictions( frame, panoptic_seg.to(self.cpu_device), segments_info ) elif "instances" in predictions: predictions = predictions["instances"].to(self.cpu_device) vis_frame = video_visualizer.draw_instance_predictions(frame, predictions) elif "sem_seg" in predictions: vis_frame = video_visualizer.draw_sem_seg( frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) ) # Converts Matplotlib RGB format to OpenCV BGR format vis_frame = cv2.cvtColor(vis_frame.get_image(), cv2.COLOR_RGB2BGR) return vis_frame frame_gen = self._frame_from_video(video) if self.parallel: buffer_size = self.predictor.default_buffer_size frame_data = deque() for cnt, frame in enumerate(frame_gen): frame_data.append(frame) self.predictor.put(frame) if cnt >= buffer_size: frame = frame_data.popleft() predictions = self.predictor.get() yield process_predictions(frame, predictions) while len(frame_data): frame = frame_data.popleft() predictions = self.predictor.get() yield process_predictions(frame, predictions) else: for frame in frame_gen: yield process_predictions(frame, self.predictor(frame)) class AsyncPredictor: """ A predictor that runs the model asynchronously, possibly on >1 GPUs. Because rendering the visualization takes considerably amount of time, this helps improve throughput a little bit when rendering videos. """ class _StopToken: pass class _PredictWorker(mp.Process): def __init__(self, cfg, task_queue, result_queue): self.cfg = cfg self.task_queue = task_queue self.result_queue = result_queue super().__init__() def run(self): predictor = DefaultPredictor(self.cfg) while True: task = self.task_queue.get() if isinstance(task, AsyncPredictor._StopToken): break idx, data = task result = predictor(data) self.result_queue.put((idx, result)) def __init__(self, cfg, num_gpus: int = 1): """ Args: cfg (CfgNode): num_gpus (int): if 0, will run on CPU """ num_workers = max(num_gpus, 1) self.task_queue = mp.Queue(maxsize=num_workers * 3) self.result_queue = mp.Queue(maxsize=num_workers * 3) self.procs = [] for gpuid in range(max(num_gpus, 1)): cfg = cfg.clone() cfg.defrost() cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu" self.procs.append( AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue) ) self.put_idx = 0 self.get_idx = 0 self.result_rank = [] self.result_data = [] for p in self.procs: p.start() atexit.register(self.shutdown) def put(self, image): self.put_idx += 1 self.task_queue.put((self.put_idx, image)) def get(self): self.get_idx += 1 # the index needed for this request if len(self.result_rank) and self.result_rank[0] == self.get_idx: res = self.result_data[0] del self.result_data[0], self.result_rank[0] return res while True: # make sure the results are returned in the correct order idx, res = self.result_queue.get() if idx == self.get_idx: return res insert = bisect.bisect(self.result_rank, idx) self.result_rank.insert(insert, idx) self.result_data.insert(insert, res) def __len__(self): return self.put_idx - self.get_idx def __call__(self, image): self.put(image) return self.get() def shutdown(self): for _ in self.procs: self.task_queue.put(AsyncPredictor._StopToken()) @property def default_buffer_size(self): return len(self.procs) * 5 detectron2_model_list = { "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x":{ "config_file": "configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml", "ckpts": "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl" }, } # def dtectron2_instance_inference(image, config_file, ckpts, device): # cfg = get_cfg() # cfg.merge_from_file(config_file) # cfg.MODEL.WEIGHTS = ckpts # cfg.MODEL.DEVICE = "cpu" # cfg.output = "output_img.jpg" # visualization_demo = VisualizationDemo(cfg, device=device) # if image: # intput_path = "intput_img.jpg" # image.save(intput_path) # image = read_image(intput_path, format="BGR") # predictions, vis_output = visualization_demo.run_on_image(image) # output_image = PIL.Image.fromarray(vis_output.get_image()) # # print("predictions: ", predictions) # return output_image def dtectron2_instance_inference(image, input_model_name, device): cfg = get_cfg() config_file = detectron2_model_list[input_model_name]["config_file"] ckpts = detectron2_model_list[input_model_name]["ckpts"] cfg.merge_from_file(config_file) cfg.MODEL.WEIGHTS = ckpts cfg.MODEL.DEVICE = "cpu" cfg.output = "output_img.jpg" visualization_demo = VisualizationDemo(cfg, device=device) if image: intput_path = "intput_img.jpg" image.save(intput_path) image = read_image(intput_path, format="BGR") predictions, vis_output = visualization_demo.run_on_image(image) output_image = PIL.Image.fromarray(vis_output.get_image()) # print("predictions: ", predictions) return output_image def download_test_img(): # Images torch.hub.download_url_to_file( 'https://user-images.githubusercontent.com/59380685/268517006-d8d4d3b3-964a-4f4d-8458-18c7eb75a4f2.jpg', '000000502136.jpg') if __name__ == '__main__': input_image = gr.inputs.Image(type='pil', label='Input Image') input_model_name = gr.inputs.Dropdown(list(detectron2_model_list.keys()), label="Model Name", default="COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x") input_device = gr.inputs.Dropdown(["cpu", "cuda"], label="Devices", default="cpu") output_image = gr.outputs.Image(type='pil', label='Output Image') output_predictions = gr.outputs.Textbox(type='text', label='Output Predictions') title = "Detectron2 web demo" description = "
" \ "

Detectron2 Detectron2 是 Facebook AI Research 的下一代库,提供最先进的检测和分割算法。它是Detectron 和maskrcnn-benchmark的后继者 。它支持 Facebook 中的许多计算机视觉研究项目和生产应用。" \ "Detectron2 is a platform for object detection, segmentation and other visual recognition tasks..

" article = "

Detectron2

" \ "

gradio build by gatilin

" download_test_img() examples = [["000000502136.jpg", "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x", "cpu"]] gr.Interface(fn=dtectron2_instance_inference, inputs=[input_image, input_model_name, input_device], outputs=output_image,examples=examples, title=title, description=description, article=article).launch()