import os os.system('pip install git+https://github.com/huggingface/transformers.git --upgrade') os.system('pip install pyyaml==5.1') # workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158) os.system('pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html') # install detectron2 that matches pytorch 1.8 # See https://detectron2.readthedocs.io/tutorials/install.html for instructions os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html') import gradio as gr import numpy as np from transformers import LayoutLMv2FeatureExtractor, LayoutLMv2Tokenizer, LayoutLMV2ForTokenClassification from datasets import load_dataset from PIL import Image, ImageDraw, ImageFont ds = load_dataset("hf-internal-testing/fixtures_docvqa", split="test") image = Image.open(ds[0]["file"]).convert("RGB") image.save("document.png") feature_extractor = LayoutLMv2FeatureExtractor.from_pretrained("microsoft/layoutlmv2-base-uncased") tokenizer = LayoutLMv2Tokenizer.from_pretrained("microsoft/layoutlmv2-base-uncased") model = LayoutLMv2ForTokenClassification.from_pretrained("nielsr/layoutlmv2-finetuned-funsd") def unnormalize_box(bbox, width, height): return [ width * (bbox[0] / 1000), height * (bbox[1] / 1000), width * (bbox[2] / 1000), height * (bbox[3] / 1000), ] def iob_to_label(label): label = label[2:] if not label: return 'other' return label def process_image(image): width, height = image.size # get words, boxes encoding_feature_extractor = feature_extractor(image, return_tensors="pt") words, boxes = encoding_feature_extractor.words, encoding_feature_extractor.boxes # encode encoding = tokenizer(words, boxes=boxes, return_offsets_mapping=True, return_tensors="pt") offset_mapping = encoding.pop('offset_mapping') encoding["image"] = encoding_feature_extractor.pixel_values # forward pass outputs = model(**encoding) # get predictions predictions = outputs.logits.argmax(-1).squeeze().tolist() token_boxes = encoding.bbox.squeeze().tolist() # only keep non-subword predictions is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0 true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] # draw predictions over the image draw = ImageDraw.Draw(image) font = ImageFont.load_default() for prediction, box in zip(true_predictions, true_boxes): predicted_label = iob_to_label(prediction).lower() draw.rectangle(box, outline=label2color[predicted_label]) draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font) return image title = "Interactive demo: LayoutLMv2" description = "Demo for Microsoft's LayoutLMv2, a Transformer for state-of-the-art document image understanding tasks. To use it, simply upload an image or use the example image below. Results will show up in a few seconds." article = "

LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding | Github Repo

" examples =[['document.png']] iface = gr.Interface(fn=process_image, inputs=gr.inputs.Image(shape=(480, 480), type="pil"), outputs=gr.outputs.Image(type='pil', label=f'annotated image'), title=title, description=description, article=article, examples=examples) iface.launch()