Spaces:
Runtime error
Runtime error
Commit
•
c109b6e
0
Parent(s):
Duplicate from Liviox24/LoanEligibilityPrediction
Browse filesCo-authored-by: Livio Vona <Liviox24@users.noreply.huggingface.co>
- .gitattributes +27 -0
- README.md +14 -0
- app.py +440 -0
- requirements.txt +7 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
19 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: LoanEligibilityPrediction
|
3 |
+
emoji: 📚
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.0.22
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: afl-3.0
|
11 |
+
duplicated_from: Liviox24/LoanEligibilityPrediction
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""LoanEligibilityPrediction.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/15wGr9tHgIq7Ua4af83Z0UqfAsH8dyOEZ
|
8 |
+
|
9 |
+
# IMPORT LIBRERIE
|
10 |
+
"""
|
11 |
+
|
12 |
+
# Commented out IPython magic to ensure Python compatibility.
|
13 |
+
import numpy as np
|
14 |
+
import pandas as pd
|
15 |
+
import seaborn as sns
|
16 |
+
import gradio as gr
|
17 |
+
import matplotlib.pyplot as plt
|
18 |
+
# %matplotlib inline
|
19 |
+
|
20 |
+
from sklearn.model_selection import train_test_split
|
21 |
+
from sklearn.preprocessing import MinMaxScaler
|
22 |
+
from sklearn.preprocessing import StandardScaler
|
23 |
+
|
24 |
+
"""# COLLEZIONE DATI"""
|
25 |
+
|
26 |
+
url = "https://raw.githubusercontent.com/livio-24/LoanEligibilityPrediction/main/dataset.csv"
|
27 |
+
|
28 |
+
#caricamento dataset in un pandas dataframe
|
29 |
+
dataset = pd.read_csv(url)
|
30 |
+
|
31 |
+
"""# EXPLORATORY DATA ANALYSIS"""
|
32 |
+
|
33 |
+
#prime 5 righe
|
34 |
+
dataset.head()
|
35 |
+
|
36 |
+
#numero righe e colonne
|
37 |
+
dataset.shape
|
38 |
+
|
39 |
+
dataset.describe()
|
40 |
+
#misure statistiche
|
41 |
+
|
42 |
+
#info sulle colonne
|
43 |
+
#5 variabili numeriche e 8 variabili categoriche
|
44 |
+
dataset.info()
|
45 |
+
|
46 |
+
#Distribuzione variabile target
|
47 |
+
dataset['Loan_Status'].value_counts()
|
48 |
+
|
49 |
+
# numero di valori mancanti in ogni colonna
|
50 |
+
# verranno gestiti successivamente nella fase di data cleaning
|
51 |
+
dataset.isnull().sum()
|
52 |
+
|
53 |
+
#eliminiamo colonna Loan_ID perché inutile
|
54 |
+
dataset.drop(columns='Loan_ID', axis = 1, inplace=True)
|
55 |
+
|
56 |
+
dataset.head()
|
57 |
+
|
58 |
+
"""**DATA VISUALIZATION - ANALISI UNIVARIATA**
|
59 |
+
|
60 |
+
VARIABILI CATEGORICHE
|
61 |
+
"""
|
62 |
+
|
63 |
+
#visualizzazione valori variabili catagoriche in percentuale
|
64 |
+
dataset['Gender'].value_counts(normalize=True).plot.bar(title='Gender')
|
65 |
+
plt.show()
|
66 |
+
dataset['Married'].value_counts(normalize=True).plot.bar(title='Married')
|
67 |
+
plt.show()
|
68 |
+
dataset['Self_Employed'].value_counts(normalize=True).plot.bar(title='Self_Employed')
|
69 |
+
plt.show()
|
70 |
+
dataset['Credit_History'].value_counts(normalize=True).plot.bar(title='Credit_History')
|
71 |
+
plt.show()
|
72 |
+
|
73 |
+
"""Risultati:
|
74 |
+
- 80% dei candidati nel dataset è maschio
|
75 |
+
- Circa il 65% dei candidati nel dataset è sposato/a
|
76 |
+
- Circa il 15% lavora in proprio
|
77 |
+
- Circa l'85% ha ripagato i propri debiti
|
78 |
+
|
79 |
+
VARIABILI ORDINALI
|
80 |
+
"""
|
81 |
+
|
82 |
+
#visualizzazione valori variabili ordinali in percentuale
|
83 |
+
dataset['Dependents'].value_counts(normalize=True).plot.bar(title='Dependents')
|
84 |
+
plt.show()
|
85 |
+
dataset['Education'].value_counts(normalize=True).plot.bar(title='Education')
|
86 |
+
plt.show()
|
87 |
+
dataset['Property_Area'].value_counts(normalize=True).plot.bar(title='Property_Area')
|
88 |
+
plt.show()
|
89 |
+
|
90 |
+
"""Risultati:
|
91 |
+
- La maggior parte dei candidati non ha familiari dipendenti
|
92 |
+
- Circa l'80% dei candidati ha una laurea
|
93 |
+
- La maggior parte dei candidati vive in un'area semiurbana
|
94 |
+
|
95 |
+
VARIABILI NUMERICHE
|
96 |
+
"""
|
97 |
+
|
98 |
+
#visualizzazione distribuzione variabile 'ApplicantIncome'
|
99 |
+
sns.distplot(dataset['ApplicantIncome'])
|
100 |
+
plt.show()
|
101 |
+
#boxplot per individuazione outliers
|
102 |
+
dataset.boxplot(['ApplicantIncome'])
|
103 |
+
plt.show()
|
104 |
+
|
105 |
+
#visualizzazione distribuzione variabile 'CoapplicantIncome'
|
106 |
+
sns.distplot(dataset['CoapplicantIncome'])
|
107 |
+
plt.show()
|
108 |
+
#boxplot per individuazione outliers
|
109 |
+
dataset.boxplot(['CoapplicantIncome'])
|
110 |
+
plt.show()
|
111 |
+
|
112 |
+
#visualizzazione distribuzione variabile 'LoanAmount'
|
113 |
+
sns.distplot(dataset['LoanAmount'])
|
114 |
+
plt.show()
|
115 |
+
dataset.boxplot(['LoanAmount'])
|
116 |
+
plt.show()
|
117 |
+
|
118 |
+
#dataset['LoanAmount'].hist(bins=20)
|
119 |
+
|
120 |
+
#visualizzazione distribuzione variabile 'Loan_Amount_Term'
|
121 |
+
sns.distplot(dataset['Loan_Amount_Term'])
|
122 |
+
plt.show()
|
123 |
+
dataset.boxplot(['Loan_Amount_Term'])
|
124 |
+
plt.show()
|
125 |
+
|
126 |
+
"""La maggior parte delle features numeriche ha degli outliers
|
127 |
+
|
128 |
+
**Matrice di correlazione**
|
129 |
+
"""
|
130 |
+
|
131 |
+
correlation_matrix = dataset.corr()
|
132 |
+
|
133 |
+
# heat map per visualizzare matrice di correlazione
|
134 |
+
sns.heatmap(correlation_matrix, cbar=True, fmt='.1f', annot=True, cmap='coolwarm')
|
135 |
+
#plt.savefig('Correlation Heat map', bbox_inches='tight')
|
136 |
+
|
137 |
+
"""Non ci sono molte variabili correlate tra di loro, le uniche due sono ApplicantIncome - LoanAmount"""
|
138 |
+
|
139 |
+
#conversione variabili categoriche in numeriche
|
140 |
+
dataset.replace({'Gender':{'Male':0, 'Female':1}, 'Married' :{'No':0, 'Yes':1}, 'Education':{'Not Graduate':0, 'Graduate':1}, 'Self_Employed':{'No':0, 'Yes':1}, 'Property_Area':{'Rural':0, 'Urban':1, 'Semiurban':2}, 'Loan_Status':{'N':0, 'Y':1}}, inplace = True)
|
141 |
+
|
142 |
+
|
143 |
+
# replacing the value of 3+ to 4
|
144 |
+
dataset['Dependents'].replace(to_replace='3+', value=4, inplace=True)
|
145 |
+
|
146 |
+
"""# DATA CLEANING
|
147 |
+
|
148 |
+
**CONTROLLO VALORI MANCANTI**
|
149 |
+
"""
|
150 |
+
|
151 |
+
dataset.isnull().sum()
|
152 |
+
|
153 |
+
#Sostituiamo i valori mancanti con la moda per le variabili categoriche
|
154 |
+
dataset['Gender'].fillna(dataset['Gender'].mode()[0], inplace=True)
|
155 |
+
dataset['Married'].fillna(dataset['Married'].mode()[0], inplace=True)
|
156 |
+
dataset['Dependents'].fillna(dataset['Dependents'].mode()[0], inplace=True)
|
157 |
+
dataset['Self_Employed'].fillna(dataset['Self_Employed'].mode()[0], inplace=True)
|
158 |
+
dataset['Credit_History'].fillna(dataset['Credit_History'].mode()[0], inplace=True)
|
159 |
+
|
160 |
+
#Utilizziamo la mediana poiché la variabile ha degli outliers, quindi non è un buon approccio utilizzare la media
|
161 |
+
dataset['LoanAmount'].fillna(dataset['LoanAmount'].median(), inplace=True)
|
162 |
+
#dataset['LoanAmount'].fillna(dataset['LoanAmount'].mean(), inplace=True)
|
163 |
+
|
164 |
+
dataset['Loan_Amount_Term'].value_counts()
|
165 |
+
|
166 |
+
#Nella variabile Loan_Amount_Term possiamo notare che 360 è il valore che si ripete di più, quindi utilizziamo la moda
|
167 |
+
dataset['Loan_Amount_Term'].fillna(dataset['Loan_Amount_Term'].mode()[0], inplace=True)
|
168 |
+
|
169 |
+
dataset.isnull().sum()
|
170 |
+
|
171 |
+
#Per trasformare Dtype di Dependents in int
|
172 |
+
dataset['Dependents'] = dataset['Dependents'].astype(str).astype(int)
|
173 |
+
dataset.info()
|
174 |
+
|
175 |
+
"""**GESTIONE OUTLIERS**"""
|
176 |
+
|
177 |
+
fig, axs = plt.subplots(2, 2, figsize=(10, 8))
|
178 |
+
|
179 |
+
#Distribuzioni prima di applicare log
|
180 |
+
sns.histplot(data=dataset, x="ApplicantIncome", kde=True, ax=axs[0, 0], color='green')
|
181 |
+
sns.histplot(data=dataset, x="CoapplicantIncome", kde=True, ax=axs[0, 1], color='skyblue')
|
182 |
+
sns.histplot(data=dataset, x="LoanAmount", kde=True, ax=axs[1, 0], color='orange')
|
183 |
+
|
184 |
+
# Log Transformation per normalizzare la distribuzione
|
185 |
+
|
186 |
+
dataset.ApplicantIncome = np.log(dataset.ApplicantIncome)
|
187 |
+
dataset.CoapplicantIncome = np.log(dataset.CoapplicantIncome + 1)
|
188 |
+
dataset.LoanAmount = np.log(dataset.LoanAmount)
|
189 |
+
|
190 |
+
fig, axs = plt.subplots(2, 2, figsize=(10, 8))
|
191 |
+
|
192 |
+
#Distribuzioni dopo aver applicato log
|
193 |
+
sns.histplot(data=dataset, x="ApplicantIncome", kde=True, ax=axs[0, 0], color='green')
|
194 |
+
sns.histplot(data=dataset, x="CoapplicantIncome", kde=True, ax=axs[0, 1], color='skyblue')
|
195 |
+
sns.histplot(data=dataset, x="LoanAmount", kde=True, ax=axs[1, 0], color='orange')
|
196 |
+
|
197 |
+
"""Possiamo notare che la distribuzione è migliorata dopo aver applicato il logaritmo
|
198 |
+
|
199 |
+
# SPLIT DATASET
|
200 |
+
"""
|
201 |
+
|
202 |
+
#definizione variabili dipendenti e indipendenti
|
203 |
+
|
204 |
+
x = dataset.drop('Loan_Status', axis = 1)
|
205 |
+
y = dataset['Loan_Status']
|
206 |
+
|
207 |
+
#split dataset
|
208 |
+
|
209 |
+
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42, stratify = y)
|
210 |
+
|
211 |
+
print("X_train dataset: ", X_train.shape)
|
212 |
+
print("y_train dataset: ", y_train.shape)
|
213 |
+
print("X_test dataset: ", X_test.shape)
|
214 |
+
print("y_test dataset: ", y_test.shape)
|
215 |
+
|
216 |
+
y_test.value_counts()
|
217 |
+
|
218 |
+
#Distribuzione della variabile dipendente
|
219 |
+
plt.figure(figsize=(5,5))
|
220 |
+
pd.value_counts(dataset['Loan_Status']).plot.bar()
|
221 |
+
plt.xlabel('Loan_Status')
|
222 |
+
plt.ylabel('Frequency')
|
223 |
+
dataset['Loan_Status'].value_counts()
|
224 |
+
plt.savefig('target_distr', bbox_inches='tight')
|
225 |
+
|
226 |
+
"""# DATA SCALING"""
|
227 |
+
|
228 |
+
#Normalizzazione
|
229 |
+
scaler = MinMaxScaler(feature_range=(0, 1))
|
230 |
+
X_train = scaler.fit_transform(X_train)
|
231 |
+
X_test = scaler.fit_transform(X_test)
|
232 |
+
|
233 |
+
#z-score
|
234 |
+
#scaler = StandardScaler()
|
235 |
+
#X_train=scaler.fit_transform(X_train)
|
236 |
+
#X_test=scaler.transform(X_test)
|
237 |
+
|
238 |
+
df = pd.DataFrame(X_train, columns = x.columns)
|
239 |
+
|
240 |
+
df
|
241 |
+
|
242 |
+
"""# FEATURE SELECTION"""
|
243 |
+
|
244 |
+
#feature selection supervisionata
|
245 |
+
|
246 |
+
from sklearn.feature_selection import SelectKBest
|
247 |
+
from sklearn.feature_selection import chi2, f_classif
|
248 |
+
from numpy import set_printoptions
|
249 |
+
|
250 |
+
fs = SelectKBest(score_func=chi2,k=5)
|
251 |
+
fs.fit_transform(X_train, y_train)
|
252 |
+
|
253 |
+
X_new_train = fs.transform(X_train)
|
254 |
+
X_new_test = fs.transform(X_test)
|
255 |
+
print(X_new_train.shape)
|
256 |
+
|
257 |
+
x.columns[fs.get_support(indices=True)]
|
258 |
+
print("features selezionate: ", x.columns[fs.get_support(indices=True)].tolist())
|
259 |
+
|
260 |
+
"""# COSTRUZIONE MODELLI"""
|
261 |
+
|
262 |
+
models = []
|
263 |
+
precision = []
|
264 |
+
accuracy = []
|
265 |
+
recall = []
|
266 |
+
f1 = []
|
267 |
+
|
268 |
+
"""**LOGISTIC REGRESSION**"""
|
269 |
+
|
270 |
+
from sklearn.linear_model import LogisticRegression
|
271 |
+
from sklearn.metrics import classification_report, confusion_matrix, plot_confusion_matrix, accuracy_score ,recall_score, precision_score, f1_score
|
272 |
+
|
273 |
+
logisticRegr = LogisticRegression()
|
274 |
+
logisticRegr.fit(X_new_train, y_train)
|
275 |
+
|
276 |
+
y_train_pred = logisticRegr.predict(X_new_train)
|
277 |
+
y_test_pred = logisticRegr.predict(X_new_test)
|
278 |
+
|
279 |
+
fig, ax = plt.subplots(figsize=(8, 8))
|
280 |
+
plot_confusion_matrix(logisticRegr, X_new_test, y_test, ax=ax)
|
281 |
+
plt.show()
|
282 |
+
#print(confusion_matrix(y_test, y_test_pred))
|
283 |
+
|
284 |
+
#Risultati ottenuti
|
285 |
+
print(classification_report(y_test, y_test_pred))
|
286 |
+
print("Accuracy on training data:",accuracy_score(y_train, y_train_pred))
|
287 |
+
print("Accuracy on test data:",accuracy_score(y_test, y_test_pred))
|
288 |
+
|
289 |
+
models.append('Logistic Regression')
|
290 |
+
accuracy.append(accuracy_score(y_test, y_test_pred))
|
291 |
+
recall.append(recall_score(y_test, y_test_pred))
|
292 |
+
precision.append(precision_score(y_test, y_test_pred))
|
293 |
+
f1.append(f1_score(y_test, y_test_pred))
|
294 |
+
|
295 |
+
"""**DECISION TREE**"""
|
296 |
+
|
297 |
+
from sklearn.tree import DecisionTreeClassifier
|
298 |
+
|
299 |
+
tree_model = DecisionTreeClassifier( random_state=42)
|
300 |
+
tree_model.fit(X_new_train, y_train)
|
301 |
+
|
302 |
+
y_train_pred = tree_model.predict(X_new_train)
|
303 |
+
y_test_pred = tree_model.predict(X_new_test)
|
304 |
+
|
305 |
+
fig, ax = plt.subplots(figsize=(8, 8))
|
306 |
+
plot_confusion_matrix(logisticRegr, X_new_test, y_test, ax=ax)
|
307 |
+
plt.show()
|
308 |
+
|
309 |
+
print(classification_report(y_test, y_test_pred))
|
310 |
+
print("Accuracy on training data:",accuracy_score(y_train, y_train_pred))
|
311 |
+
print("Accuracy on test data:",accuracy_score(y_test, y_test_pred))
|
312 |
+
|
313 |
+
models.append('Decision Tree')
|
314 |
+
accuracy.append(accuracy_score(y_test, y_test_pred))
|
315 |
+
recall.append(recall_score(y_test, y_test_pred))
|
316 |
+
precision.append(precision_score(y_test, y_test_pred))
|
317 |
+
f1.append(f1_score(y_test, y_test_pred))
|
318 |
+
|
319 |
+
"""**NAIVE BAYES**"""
|
320 |
+
|
321 |
+
from sklearn.naive_bayes import GaussianNB
|
322 |
+
|
323 |
+
NB = GaussianNB()
|
324 |
+
NB.fit(X_new_train, y_train)
|
325 |
+
|
326 |
+
y_train_pred = NB.predict(X_new_train)
|
327 |
+
y_test_pred = NB.predict(X_new_test)
|
328 |
+
|
329 |
+
fig, ax = plt.subplots(figsize=(8, 8))
|
330 |
+
plot_confusion_matrix(NB, X_new_test, y_test, ax=ax)
|
331 |
+
plt.show()
|
332 |
+
|
333 |
+
print(classification_report(y_test, y_test_pred))
|
334 |
+
print("Accuracy on training data:",accuracy_score(y_train, y_train_pred))
|
335 |
+
print("Accuracy on test data:",accuracy_score(y_test, y_test_pred))
|
336 |
+
|
337 |
+
models.append('Naive Bayes')
|
338 |
+
accuracy.append(accuracy_score(y_test, y_test_pred))
|
339 |
+
recall.append(recall_score(y_test, y_test_pred))
|
340 |
+
precision.append(precision_score(y_test, y_test_pred))
|
341 |
+
f1.append(f1_score(y_test, y_test_pred))
|
342 |
+
|
343 |
+
"""**RANDOM FOREST**"""
|
344 |
+
|
345 |
+
from sklearn.ensemble import RandomForestClassifier
|
346 |
+
|
347 |
+
RandomForest = RandomForestClassifier()
|
348 |
+
RandomForest.fit(X_new_train, y_train)
|
349 |
+
|
350 |
+
y_train_pred = RandomForest.predict(X_new_train)
|
351 |
+
y_test_pred = RandomForest.predict(X_new_test)
|
352 |
+
|
353 |
+
fig, ax = plt.subplots(figsize=(8, 8))
|
354 |
+
plot_confusion_matrix(RandomForest, X_new_test, y_test, ax=ax)
|
355 |
+
plt.show()
|
356 |
+
|
357 |
+
print(classification_report(y_test, y_test_pred))
|
358 |
+
print("Accuracy on training data:",accuracy_score(y_train, y_train_pred))
|
359 |
+
print("Accuracy on test data:",accuracy_score(y_test, y_test_pred))
|
360 |
+
|
361 |
+
models.append('Random Forest')
|
362 |
+
accuracy.append(accuracy_score(y_test, y_test_pred))
|
363 |
+
recall.append(recall_score(y_test, y_test_pred))
|
364 |
+
precision.append(precision_score(y_test, y_test_pred))
|
365 |
+
f1.append(f1_score(y_test, y_test_pred))
|
366 |
+
|
367 |
+
"""**XGBOOST**"""
|
368 |
+
|
369 |
+
from xgboost import XGBClassifier
|
370 |
+
|
371 |
+
XGB = XGBClassifier()
|
372 |
+
XGB.fit(X_new_train, y_train)
|
373 |
+
|
374 |
+
y_train_pred = XGB.predict(X_new_train)
|
375 |
+
y_test_pred = XGB.predict(X_new_test)
|
376 |
+
|
377 |
+
fig, ax = plt.subplots(figsize=(8, 8))
|
378 |
+
plot_confusion_matrix(XGB, X_new_test, y_test, ax=ax)
|
379 |
+
plt.show()
|
380 |
+
|
381 |
+
print(classification_report(y_test, y_test_pred))
|
382 |
+
print("Accuracy on training data:",accuracy_score(y_train, y_train_pred))
|
383 |
+
print("Accuracy on test data:",accuracy_score(y_test, y_test_pred))
|
384 |
+
|
385 |
+
models.append('XGBoost')
|
386 |
+
accuracy.append(accuracy_score(y_test, y_test_pred))
|
387 |
+
recall.append(recall_score(y_test, y_test_pred))
|
388 |
+
precision.append(precision_score(y_test, y_test_pred))
|
389 |
+
f1.append(f1_score(y_test, y_test_pred))
|
390 |
+
|
391 |
+
"""**CONFRONTO METRICHE**"""
|
392 |
+
|
393 |
+
compare = pd.DataFrame({'Model': models,
|
394 |
+
'Accuracy': accuracy,
|
395 |
+
'Precision': precision,
|
396 |
+
'Recall': recall,
|
397 |
+
'f1_score': f1})
|
398 |
+
compare.sort_values(by='Accuracy', ascending=False)
|
399 |
+
#print(compare.to_latex())
|
400 |
+
|
401 |
+
def loan(Gender, Married, Dependents, Education, Self_Employed, ApplicantIncome, CoapplicantIncome, LoanAmount, Loan_Amount_Term, Credit_History, Property_Area):
|
402 |
+
#turning the arguments into a numpy array
|
403 |
+
Marr = 0 if Married == 'No' else 1
|
404 |
+
Educ = 0 if Education == 'Not Graduate' else 1
|
405 |
+
CredHis = 0 if Credit_History == '0: bad credit history' else 1
|
406 |
+
Dep = 4 if Dependents == '3+' else Dependents
|
407 |
+
Gen = 0 if Gender == 'Male' else 1
|
408 |
+
Self_Empl = 0 if Self_Employed == 'No' else 1
|
409 |
+
if Property_Area == 'Rural': PA = 0
|
410 |
+
elif Property_Area == 'Urban': PA = 1
|
411 |
+
else: PA = 2
|
412 |
+
|
413 |
+
|
414 |
+
|
415 |
+
instance = np.array([Marr, Educ, CoapplicantIncome, CredHis, PA, Gen, Self_Empl, Dependents, ApplicantIncome, LoanAmount, Loan_Amount_Term])
|
416 |
+
|
417 |
+
|
418 |
+
#reshaping into 2D array
|
419 |
+
instance_resh = instance.reshape(1,-1)
|
420 |
+
new_instance_resh = scaler.transform(instance_resh)
|
421 |
+
new_instance_resh = np.delete(new_instance_resh, [5,6,7,8,9,10], axis=1)
|
422 |
+
prediction = logisticRegr.predict(new_instance_resh)
|
423 |
+
|
424 |
+
return ("Loan approved" if prediction[0] == 1 else "Loan not approved")
|
425 |
+
|
426 |
+
app = gr.Interface(fn=loan,
|
427 |
+
inputs=[gr.Radio(['Male', 'Female']),
|
428 |
+
gr.Radio(['Yes', 'No']),
|
429 |
+
gr.Radio(['0', '1', '2', '3+']),
|
430 |
+
gr.Radio(['Graduate', 'Not Graduate']),
|
431 |
+
gr.Radio(['Yes', 'No']),
|
432 |
+
"number",
|
433 |
+
"number",
|
434 |
+
"number",
|
435 |
+
"number",
|
436 |
+
gr.Radio(['0: bad credit history', '1: good credit history']),
|
437 |
+
gr.Radio(['Urban', 'Semiurban', 'Rural'])],
|
438 |
+
outputs="text",
|
439 |
+
title = "Loan Eligibility Prediction")
|
440 |
+
app.launch(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.0.22
|
2 |
+
matplotlib==3.2.2
|
3 |
+
numpy==1.21.6
|
4 |
+
pandas==1.3.5
|
5 |
+
scikit_learn==1.1.1
|
6 |
+
seaborn==0.11.2
|
7 |
+
xgboost==0.90
|