import numpy as np import onnxruntime as rt onnx_path = 'model/model.onnx' def predict(img): session = rt.InferenceSession(onnx_path) input_name = session.get_inputs()[0].name output_name = session.get_outputs()[0].name img = np.array(img).astype(np.float32) img = img.reshape(1, 1, 256, 256) img = img / 255.0 pred = session.run([output_name], {input_name: img})[0] pred = np.exp(pred) / np.sum(np.exp(pred), axis=1, keepdims=True) class_probs = {'No Substructure': float(pred[0][0]), 'Substructure': float(pred[0][1])} return class_probs