Spaces:
Runtime error
Runtime error
Minor Changes
Browse files- README.md +17 -2
- app.py +1 -1
- {samples β examples}/image1.png +0 -0
- {samples β examples}/image2.png +0 -0
- {samples β examples}/image3.png +0 -0
- {samples β examples}/image4.png +0 -0
- {samples β examples}/image5.png +0 -0
- samples/sample1.png +3 -0
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: Water Body Segmentation
|
3 |
-
emoji:
|
4 |
colorFrom: blue
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
@@ -9,4 +9,19 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
title: Water Body Segmentation
|
3 |
+
emoji: π€
|
4 |
colorFrom: blue
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# UNET Water Body Segmentation - PyTorch
|
13 |
+
|
14 |
+
This project contains the code for training and deploying a UNET model for water body segmentation from satellite images. The model is trained on the [Satellite Images of Water Bodies](https://www.kaggle.com/datasets/franciscoescobar/satellite-images-of-water-bodies) from Kaggle. The model is trained using PyTorch and deployed using [Gradio](https://gradio.app/) on [Hugging Face Spaces](https://huggingface.co/spaces).
|
15 |
+
|
16 |
+
## π Getting Started
|
17 |
+
|
18 |
+
All the code for training the model and exporting to ONNX format is present in the [notebook](notebooks) folder or you can use this [Kaggle Notebook](https://www.kaggle.com/code/gauthamkrishnan119/water-body-segmentation-pytorch) for training the model. The [app.py](app.py) file contains the code for deploying the model using Gradio.
|
19 |
+
|
20 |
+
## π€ Demo
|
21 |
+
|
22 |
+
You can try out the model on [Hugging Face Spaces](https://huggingface.co/spaces/gauthamk/water-body-segmentation)
|
23 |
+
|
24 |
+
## π₯οΈ Sample Inference
|
25 |
+
|
26 |
+

|
27 |
+
|
app.py
CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
|
|
2 |
from functions import *
|
3 |
|
4 |
title = "Water Body Segmentation - Image Segmentation PyTorch"
|
5 |
-
examples = ['
|
6 |
|
7 |
interface = gr.Interface(fn=predict, inputs=gr.Image(type= 'numpy').style(height= 256),
|
8 |
outputs= gr.Image(type = "numpy").style(height= 256),
|
|
|
2 |
from functions import *
|
3 |
|
4 |
title = "Water Body Segmentation - Image Segmentation PyTorch"
|
5 |
+
examples = ['examples/image1.png', 'examples/image2.png', 'examples/image3.png', 'examples/image4.png', 'examples/image5.png']
|
6 |
|
7 |
interface = gr.Interface(fn=predict, inputs=gr.Image(type= 'numpy').style(height= 256),
|
8 |
outputs= gr.Image(type = "numpy").style(height= 256),
|
{samples β examples}/image1.png
RENAMED
File without changes
|
{samples β examples}/image2.png
RENAMED
File without changes
|
{samples β examples}/image3.png
RENAMED
File without changes
|
{samples β examples}/image4.png
RENAMED
File without changes
|
{samples β examples}/image5.png
RENAMED
File without changes
|
samples/sample1.png
ADDED
![]() |
Git LFS Details
|