import torch | |
import torch.nn as nn | |
# Define the model | |
class Net(nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
self.fc1 = nn.Linear(28*28, 128) # MNIST images are 28x28 | |
self.fc2 = nn.Linear(128, 64) | |
self.fc3 = nn.Linear(64, 10) # There are 10 classes (0 through 9) | |
def forward(self, x): | |
x = x.view(x.shape[0], -1) # Flatten the input | |
x = torch.relu(self.fc1(x)) | |
x = torch.relu(self.fc2(x)) | |
return self.fc3(x) |