convolution
Browse files- app.py +1 -1
- app_conv.py +40 -0
- mnist_conv.pth +0 -0
- model.py → models.py +25 -1
- train.py +2 -2
app.py
CHANGED
@@ -3,7 +3,7 @@ from PIL import Image
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
import torch.nn as nn
|
6 |
-
import
|
7 |
|
8 |
net = torch.load('mnist.pth')
|
9 |
net.eval()
|
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
import torch.nn as nn
|
6 |
+
from models import Net,NetConv
|
7 |
|
8 |
net = torch.load('mnist.pth')
|
9 |
net.eval()
|
app_conv.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from models import NetConv
|
8 |
+
|
9 |
+
|
10 |
+
net_conv = torch.load('mnist_conv.pth')
|
11 |
+
net_conv.eval()
|
12 |
+
|
13 |
+
def predict(img):
|
14 |
+
arr = np.array(img) / 255 # Assuming img is in the range [0, 255]
|
15 |
+
arr.reshape(28,28)
|
16 |
+
arr = np.expand_dims(arr, axis=0) # Add batch dimension
|
17 |
+
arr = np.expand_dims(arr, axis=0) # Add batch dimension
|
18 |
+
arr = torch.from_numpy(arr).float() # Convert to PyTorch tensor
|
19 |
+
output = net_conv(arr)
|
20 |
+
topk_values, topk_indices = torch.topk(output, 2) # Get the top 2 classes
|
21 |
+
return [str(k) for k in topk_indices[0].tolist()]
|
22 |
+
|
23 |
+
with gr.Blocks() as iface:
|
24 |
+
gr.Markdown("# MNIST + Gradio End to End")
|
25 |
+
gr.HTML("Shows end to end MNIST training with Gradio interface")
|
26 |
+
with gr.Row():
|
27 |
+
with gr.Column():
|
28 |
+
sp = gr.Sketchpad(shape=(28, 28))
|
29 |
+
with gr.Row():
|
30 |
+
with gr.Column():
|
31 |
+
pred_button = gr.Button("Predict")
|
32 |
+
with gr.Column():
|
33 |
+
clear = gr.Button("Clear")
|
34 |
+
with gr.Column():
|
35 |
+
label1 = gr.Label(label='1st Pred')
|
36 |
+
label2 = gr.Label(label='2nd Pred')
|
37 |
+
|
38 |
+
pred_button.click(predict, inputs=sp, outputs=[label1,label2])
|
39 |
+
clear.click(lambda: None, None, sp, queue=False)
|
40 |
+
iface.launch()
|
mnist_conv.pth
ADDED
Binary file (904 kB). View file
|
|
model.py → models.py
RENAMED
@@ -1,5 +1,6 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
|
|
3 |
# Define the model
|
4 |
class Net(nn.Module):
|
5 |
def __init__(self):
|
@@ -14,4 +15,27 @@ class Net(nn.Module):
|
|
14 |
x = torch.relu(self.fc1(x))
|
15 |
x = torch.relu(self.fc2(x))
|
16 |
x = torch.relu(self.fc3(x))
|
17 |
-
return self.fc4(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
# Define the model
|
5 |
class Net(nn.Module):
|
6 |
def __init__(self):
|
|
|
15 |
x = torch.relu(self.fc1(x))
|
16 |
x = torch.relu(self.fc2(x))
|
17 |
x = torch.relu(self.fc3(x))
|
18 |
+
return self.fc4(x)
|
19 |
+
|
20 |
+
class NetConv(nn.Module):
|
21 |
+
def __init__(self):
|
22 |
+
super(NetConv, self).__init__()
|
23 |
+
self.conv1 = nn.Conv2d(1, 32, 3)
|
24 |
+
self.conv2 = nn.Conv2d(32, 64, 3)
|
25 |
+
self.fc1 = nn.Linear(64 * 5 * 5, 128) # Corrected
|
26 |
+
self.fc2 = nn.Linear(128, 10)
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
|
30 |
+
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
|
31 |
+
x = x.view(-1, self.num_flat_features(x))
|
32 |
+
x = F.relu(self.fc1(x))
|
33 |
+
x = self.fc2(x)
|
34 |
+
return F.log_softmax(x, dim=1)
|
35 |
+
|
36 |
+
def num_flat_features(self, x):
|
37 |
+
size = x.size()[1:]
|
38 |
+
num_features = 1
|
39 |
+
for s in size:
|
40 |
+
num_features *= s
|
41 |
+
return num_features
|
train.py
CHANGED
@@ -3,7 +3,7 @@ import torch.nn as nn
|
|
3 |
import torch.optim as optim
|
4 |
import torchvision
|
5 |
import torchvision.transforms as transforms
|
6 |
-
import
|
7 |
# Load the MNIST dataset
|
8 |
train_set = torchvision.datasets.MNIST(root='./data', train=True,
|
9 |
download=True, transform=transforms.ToTensor())
|
@@ -17,7 +17,7 @@ test_loader = torch.utils.data.DataLoader(test_set, batch_size=32,
|
|
17 |
|
18 |
|
19 |
|
20 |
-
net =
|
21 |
|
22 |
# Use CrossEntropyLoss for multi-class classification
|
23 |
criterion = nn.CrossEntropyLoss()
|
|
|
3 |
import torch.optim as optim
|
4 |
import torchvision
|
5 |
import torchvision.transforms as transforms
|
6 |
+
from models import Net
|
7 |
# Load the MNIST dataset
|
8 |
train_set = torchvision.datasets.MNIST(root='./data', train=True,
|
9 |
download=True, transform=transforms.ToTensor())
|
|
|
17 |
|
18 |
|
19 |
|
20 |
+
net = Net()
|
21 |
|
22 |
# Use CrossEntropyLoss for multi-class classification
|
23 |
criterion = nn.CrossEntropyLoss()
|