File size: 4,361 Bytes
7e0376e
 
 
 
 
 
 
 
 
 
a9e44d5
7e0376e
 
 
 
2effeef
5a483b6
a9e44d5
 
 
 
 
7e0376e
 
 
 
 
1837f83
 
 
 
7e0376e
 
 
 
2effeef
7e0376e
db20d3e
7e0376e
 
 
 
 
 
 
 
 
 
23e4ec1
7e0376e
 
 
 
 
 
 
23e4ec1
 
7e0376e
 
 
23e4ec1
7e0376e
 
 
 
 
 
 
 
b88f82b
7e0376e
fbbd4eb
7e0376e
fbbd4eb
 
7e0376e
a9e44d5
 
fbbd4eb
 
7e0376e
 
a9e44d5
7e0376e
 
 
 
 
23e4ec1
7e0376e
23e4ec1
7e0376e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbbd4eb
7e0376e
 
 
 
fbbd4eb
 
 
 
 
1072027
 
 
 
 
 
 
 
 
 
 
 
7e0376e
 
 
 
 
 
 
fbbd4eb
7e0376e
 
78efa10
7e0376e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import logging
import os
import tempfile
import time

import gradio as gr
import numpy as np
import rembg
import torch
from PIL import Image
from functools import partial

from tsr.system import TSR
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation

#HF_TOKEN = os.getenv("HF_TOKEN")

HEADER = """

"""


if torch.cuda.is_available():
    device = "cuda:0"
else:
    device = "cpu"

d = os.environ.get("DEVICE", None)
if d != None:
    device = d 

model = TSR.from_pretrained(
    "stabilityai/TripoSR",
    config_name="config.yaml",
    weight_name="model.ckpt",
#    token=HF_TOKEN
)
model.renderer.set_chunk_size(131072)
model.to(device)

rembg_session = rembg.new_session()


def check_input_image(input_image):
    if input_image is None:
        raise gr.Error("No image uploaded!")


def preprocess(input_image, do_remove_background, foreground_ratio):
    def fill_background(image):
        image = np.array(image).astype(np.float32) / 255.0
        image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
        image = Image.fromarray((image * 255.0).astype(np.uint8))
        return image

    if do_remove_background:
        image = input_image.convert("RGB")
        image = remove_background(image, rembg_session)
        image = resize_foreground(image, foreground_ratio)
        image = fill_background(image)
    else:
        image = input_image
        if image.mode == "RGBA":
            image = fill_background(image)
    return image


def generate(image):
    scene_codes = model(image, device=device)
    mesh = model.extract_mesh(scene_codes)[0]
    mesh = to_gradio_3d_orientation(mesh)
    mesh_path = tempfile.NamedTemporaryFile(suffix=".obj", delete=False)
    mesh_path2 = tempfile.NamedTemporaryFile(suffix=".glb", delete=False)
    mesh.export(mesh_path.name)
    mesh.export(mesh_path2.name)
    return mesh_path.name, mesh_path2.name

def run_example(image_pil):
    preprocessed = preprocess(image_pil, False, 0.9)
    mesh_name, mesn_name2 = generate(preprocessed)
    return preprocessed, mesh_name, mesh_name2

with gr.Blocks() as demo:
    gr.Markdown(HEADER)
    with gr.Row(variant="panel"):
        with gr.Column():
            with gr.Row():
                input_image = gr.Image(
                    label="Input Image",
                    image_mode="RGBA",
                    sources="upload",
                    type="pil",
                    elem_id="content_image",
                )
                processed_image = gr.Image(label="Processed Image", interactive=False)
            with gr.Row():
                with gr.Group():
                    do_remove_background = gr.Checkbox(
                        label="Remove Background", value=True
                    )
                    foreground_ratio = gr.Slider(
                        label="Foreground Ratio",
                        minimum=0.5,
                        maximum=1.0,
                        value=0.85,
                        step=0.05,
                    )
            with gr.Row():
                submit = gr.Button("Generate", elem_id="generate", variant="primary")
        with gr.Column():
            with gr.Tab("obj"):
                output_model = gr.Model3D(
                    label="Output Model",
                    interactive=False,
                )
            with gr.Tab("glb"):
                output_model2 = gr.Model3D(
                    label="Output Model",
                    interactive=False,
                )
    # with gr.Row(variant="panel"):
    #     gr.Examples(
    #         examples=[
    #             os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
    #         ],
    #         inputs=[input_image],
    #         outputs=[processed_image, output_model, output_model2],
    #         #cache_examples=True,
    #         fn=partial(run_example),
    #         label="Examples",
    #         examples_per_page=20
    #     )
    submit.click(fn=check_input_image, inputs=[input_image]).success(
        fn=preprocess,
        inputs=[input_image, do_remove_background, foreground_ratio],
        outputs=[processed_image],
    ).success(
        fn=generate,
        inputs=[processed_image],
        outputs=[output_model, output_model2],
    )

demo.queue(max_size=10)
demo.launch()