Gd-DeepFake-AI / utils.py
Harisreedhar
update nsfw-checker
db275a2
raw
history blame
10.6 kB
import os
import cv2
import time
import glob
import shutil
import platform
import datetime
import subprocess
import numpy as np
from threading import Thread
from moviepy.editor import VideoFileClip, ImageSequenceClip
from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip
logo_image = cv2.imread("./assets/images/logo.png", cv2.IMREAD_UNCHANGED)
quality_types = ["poor", "low", "medium", "high", "best"]
bitrate_quality_by_resolution = {
240: {"poor": "300k", "low": "500k", "medium": "800k", "high": "1000k", "best": "1200k"},
360: {"poor": "500k","low": "800k","medium": "1200k","high": "1500k","best": "2000k"},
480: {"poor": "800k","low": "1200k","medium": "2000k","high": "2500k","best": "3000k"},
720: {"poor": "1500k","low": "2500k","medium": "4000k","high": "5000k","best": "6000k"},
1080: {"poor": "2500k","low": "4000k","medium": "6000k","high": "7000k","best": "8000k"},
1440: {"poor": "4000k","low": "6000k","medium": "8000k","high": "10000k","best": "12000k"},
2160: {"poor": "8000k","low": "10000k","medium": "12000k","high": "15000k","best": "20000k"}
}
crf_quality_by_resolution = {
240: {"poor": 45, "low": 35, "medium": 28, "high": 23, "best": 20},
360: {"poor": 35, "low": 28, "medium": 23, "high": 20, "best": 18},
480: {"poor": 28, "low": 23, "medium": 20, "high": 18, "best": 16},
720: {"poor": 23, "low": 20, "medium": 18, "high": 16, "best": 14},
1080: {"poor": 20, "low": 18, "medium": 16, "high": 14, "best": 12},
1440: {"poor": 18, "low": 16, "medium": 14, "high": 12, "best": 10},
2160: {"poor": 16, "low": 14, "medium": 12, "high": 10, "best": 8}
}
def get_bitrate_for_resolution(resolution, quality):
available_resolutions = list(bitrate_quality_by_resolution.keys())
closest_resolution = min(available_resolutions, key=lambda x: abs(x - resolution))
return bitrate_quality_by_resolution[closest_resolution][quality]
def get_crf_for_resolution(resolution, quality):
available_resolutions = list(crf_quality_by_resolution.keys())
closest_resolution = min(available_resolutions, key=lambda x: abs(x - resolution))
return crf_quality_by_resolution[closest_resolution][quality]
def get_video_bitrate(video_file):
ffprobe_cmd = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', '-show_entries',
'stream=bit_rate', '-of', 'default=noprint_wrappers=1:nokey=1', video_file]
result = subprocess.run(ffprobe_cmd, stdout=subprocess.PIPE)
kbps = max(int(result.stdout) // 1000, 10)
return str(kbps) + 'k'
def trim_video(video_path, output_path, start_frame, stop_frame):
video_name, _ = os.path.splitext(os.path.basename(video_path))
trimmed_video_filename = video_name + "_trimmed" + ".mp4"
temp_path = os.path.join(output_path, "trim")
os.makedirs(temp_path, exist_ok=True)
trimmed_video_file_path = os.path.join(temp_path, trimmed_video_filename)
video = VideoFileClip(video_path, fps_source="fps")
fps = video.fps
start_time = start_frame / fps
duration = (stop_frame - start_frame) / fps
bitrate = get_bitrate_for_resolution(min(*video.size), "high")
trimmed_video = video.subclip(start_time, start_time + duration)
trimmed_video.write_videofile(
trimmed_video_file_path, codec="libx264", audio_codec="aac", bitrate=bitrate,
)
trimmed_video.close()
video.close()
return trimmed_video_file_path
def open_directory(path=None):
if path is None:
return
try:
os.startfile(path)
except:
subprocess.Popen(["xdg-open", path])
class StreamerThread(object):
def __init__(self, src=0):
self.capture = cv2.VideoCapture(src)
self.capture.set(cv2.CAP_PROP_BUFFERSIZE, 2)
self.FPS = 1 / 30
self.FPS_MS = int(self.FPS * 1000)
self.thread = None
self.stopped = False
self.frame = None
def start(self):
self.thread = Thread(target=self.update, args=())
self.thread.daemon = True
self.thread.start()
def stop(self):
self.stopped = True
self.thread.join()
print("stopped")
def update(self):
while not self.stopped:
if self.capture.isOpened():
(self.status, self.frame) = self.capture.read()
time.sleep(self.FPS)
class ProcessBar:
def __init__(self, bar_length, total, before="⬛", after="🟨"):
self.bar_length = bar_length
self.total = total
self.before = before
self.after = after
self.bar = [self.before] * bar_length
self.start_time = time.time()
def get(self, index):
total = self.total
elapsed_time = time.time() - self.start_time
average_time_per_iteration = elapsed_time / (index + 1)
remaining_iterations = total - (index + 1)
estimated_remaining_time = remaining_iterations * average_time_per_iteration
self.bar[int(index / total * self.bar_length)] = self.after
info_text = f"({index+1}/{total}) {''.join(self.bar)} "
info_text += f"(ETR: {int(estimated_remaining_time // 60)} min {int(estimated_remaining_time % 60)} sec)"
return info_text
def add_logo_to_image(img, logo=logo_image):
logo_size = int(img.shape[1] * 0.1)
logo = cv2.resize(logo, (logo_size, logo_size))
if logo.shape[2] == 4:
alpha = logo[:, :, 3]
else:
alpha = np.ones_like(logo[:, :, 0]) * 255
padding = int(logo_size * 0.1)
roi = img.shape[0] - logo_size - padding, img.shape[1] - logo_size - padding
for c in range(0, 3):
img[roi[0] : roi[0] + logo_size, roi[1] : roi[1] + logo_size, c] = (
alpha / 255.0
) * logo[:, :, c] + (1 - alpha / 255.0) * img[
roi[0] : roi[0] + logo_size, roi[1] : roi[1] + logo_size, c
]
return img
def split_list_by_lengths(data, length_list):
split_data = []
start_idx = 0
for length in length_list:
end_idx = start_idx + length
sublist = data[start_idx:end_idx]
split_data.append(sublist)
start_idx = end_idx
return split_data
def merge_img_sequence_from_ref(ref_video_path, image_sequence, output_file_name):
video_clip = VideoFileClip(ref_video_path, fps_source="fps")
fps = video_clip.fps
duration = video_clip.duration
total_frames = video_clip.reader.nframes
audio_clip = video_clip.audio if video_clip.audio is not None else None
edited_video_clip = ImageSequenceClip(image_sequence, fps=fps)
if audio_clip is not None:
edited_video_clip = edited_video_clip.set_audio(audio_clip)
bitrate = get_bitrate_for_resolution(min(*edited_video_clip.size), "high")
edited_video_clip.set_duration(duration).write_videofile(
output_file_name, codec="libx264", bitrate=bitrate,
)
edited_video_clip.close()
video_clip.close()
def scale_bbox_from_center(bbox, scale_width, scale_height, image_width, image_height):
# Extract the coordinates of the bbox
x1, y1, x2, y2 = bbox
# Calculate the center point of the bbox
center_x = (x1 + x2) / 2
center_y = (y1 + y2) / 2
# Calculate the new width and height of the bbox based on the scaling factors
width = x2 - x1
height = y2 - y1
new_width = width * scale_width
new_height = height * scale_height
# Calculate the new coordinates of the bbox, considering the image boundaries
new_x1 = center_x - new_width / 2
new_y1 = center_y - new_height / 2
new_x2 = center_x + new_width / 2
new_y2 = center_y + new_height / 2
# Adjust the coordinates to ensure the bbox remains within the image boundaries
new_x1 = max(0, new_x1)
new_y1 = max(0, new_y1)
new_x2 = min(image_width - 1, new_x2)
new_y2 = min(image_height - 1, new_y2)
# Return the scaled bbox coordinates
scaled_bbox = [new_x1, new_y1, new_x2, new_y2]
return scaled_bbox
def laplacian_blending(A, B, m, num_levels=7):
assert A.shape == B.shape
assert B.shape == m.shape
height = m.shape[0]
width = m.shape[1]
size_list = np.array([4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192])
size = size_list[np.where(size_list > max(height, width))][0]
GA = np.zeros((size, size, 3), dtype=np.float32)
GA[:height, :width, :] = A
GB = np.zeros((size, size, 3), dtype=np.float32)
GB[:height, :width, :] = B
GM = np.zeros((size, size, 3), dtype=np.float32)
GM[:height, :width, :] = m
gpA = [GA]
gpB = [GB]
gpM = [GM]
for i in range(num_levels):
GA = cv2.pyrDown(GA)
GB = cv2.pyrDown(GB)
GM = cv2.pyrDown(GM)
gpA.append(np.float32(GA))
gpB.append(np.float32(GB))
gpM.append(np.float32(GM))
lpA = [gpA[num_levels-1]]
lpB = [gpB[num_levels-1]]
gpMr = [gpM[num_levels-1]]
for i in range(num_levels-1,0,-1):
LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i]))
LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i]))
lpA.append(LA)
lpB.append(LB)
gpMr.append(gpM[i-1])
LS = []
for la,lb,gm in zip(lpA,lpB,gpMr):
ls = la * gm + lb * (1.0 - gm)
LS.append(ls)
ls_ = LS[0]
for i in range(1,num_levels):
ls_ = cv2.pyrUp(ls_)
ls_ = cv2.add(ls_, LS[i])
ls_ = ls_[:height, :width, :]
#ls_ = (ls_ - np.min(ls_)) * (255.0 / (np.max(ls_) - np.min(ls_)))
return ls_.clip(0, 255)
def mask_crop(mask, crop):
top, bottom, left, right = crop
shape = mask.shape
top = int(top)
bottom = int(bottom)
if top + bottom < shape[1]:
if top > 0: mask[:top, :] = 0
if bottom > 0: mask[-bottom:, :] = 0
left = int(left)
right = int(right)
if left + right < shape[0]:
if left > 0: mask[:, :left] = 0
if right > 0: mask[:, -right:] = 0
return mask
def create_image_grid(images, size=128):
num_images = len(images)
num_cols = int(np.ceil(np.sqrt(num_images)))
num_rows = int(np.ceil(num_images / num_cols))
grid = np.zeros((num_rows * size, num_cols * size, 3), dtype=np.uint8)
for i, image in enumerate(images):
row_idx = (i // num_cols) * size
col_idx = (i % num_cols) * size
image = cv2.resize(image.copy(), (size,size))
if image.dtype != np.uint8:
image = (image.astype('float32') * 255).astype('uint8')
if image.ndim == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
grid[row_idx:row_idx + size, col_idx:col_idx + size] = image
return grid