Spaces:
Runtime error
Runtime error
File size: 8,452 Bytes
cce9696 00335ca cce9696 00335ca cce9696 00335ca 940f359 6425c58 bb3573e 00335ca 3041d56 6425c58 8a2db3e 6425c58 3041d56 00335ca 56959b8 00335ca 3041d56 00335ca 6425c58 00335ca 6425c58 8a2db3e 3041d56 8a2db3e 6425c58 8a2db3e 3041d56 560b3c0 3041d56 1b684f1 00335ca 6425c58 00335ca 8a2db3e 6425c58 00335ca eb24b38 6425c58 560b3c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import gradio as gr
from PIL import Image, ImageFilter
import numpy as np
import io
import tempfile
import vtracer
from skimage import feature, filters, morphology
import cv2
from rembg import remove
from sklearn.cluster import KMeans
def quantize_colors(image, num_colors):
"""Reduce the number of colors in an image."""
try:
image_np = np.array(image)
h, w, c = image_np.shape
image_reshaped = image_np.reshape((-1, 3))
kmeans = KMeans(n_clusters=num_colors, random_state=42).fit(image_reshaped)
new_colors = kmeans.cluster_centers_[kmeans.labels_].reshape(h, w, 3).astype(np.uint8)
return Image.fromarray(new_colors)
except Exception as e:
print(f"Error during color quantization: {e}")
raise
def preprocess_image(image, blur_radius, sharpen_radius, noise_reduction, detail_level, edge_method, color_quantization, enhance_with_ai, remove_bg):
"""Advanced preprocessing of the image before vectorization."""
try:
if blur_radius > 0:
image = image.filter(ImageFilter.GaussianBlur(blur_radius))
if sharpen_radius > 0:
image = image.filter(ImageFilter.UnsharpMask(radius=sharpen_radius, percent=150, threshold=3))
if noise_reduction > 0:
image_np = np.array(image)
image_np = cv2.fastNlMeansDenoisingColored(image_np, None, h=noise_reduction, templateWindowSize=7, searchWindowSize=21)
image = Image.fromarray(image_np)
if detail_level > 0:
sigma = max(0.5, 3.0 - (detail_level * 0.5))
image_np = np.array(image.convert('L'))
if edge_method == 'Canny':
edges = feature.canny(image_np, sigma=sigma)
elif edge_method == 'Sobel':
edges = filters.sobel(image_np)
elif edge_method == 'Scharr':
edges = filters.scharr(image_np)
else: # Prewitt
edges = filters.prewitt(image_np)
edges = morphology.dilation(edges, morphology.square(max(1, 6 - detail_level)))
edges_img = Image.fromarray((edges * 255).astype(np.uint8))
image = Image.blend(image.convert('RGB'), edges_img.convert('RGB'), alpha=0.5)
if color_quantization > 0:
image = quantize_colors(image, color_quantization)
if enhance_with_ai:
image_np = np.array(image)
# AI-based enhancement for smoothing edges without background removal
image_np = cv2.detailEnhance(image_np, sigma_s=10, sigma_r=0.15)
if remove_bg:
image_np = remove(image_np)
image = Image.fromarray(image_np)
except Exception as e:
print(f"Error during preprocessing: {e}")
raise
return image
def convert_image(image, blur_radius, sharpen_radius, noise_reduction, detail_level, edge_method, color_quantization,
color_mode, hierarchical, mode, filter_speckle, color_precision, layer_difference,
corner_threshold, length_threshold, max_iterations, splice_threshold, path_precision,
enhance_with_ai, remove_bg, upscale_factor):
"""Convert an image to SVG using vtracer with customizable and advanced parameters."""
try:
# Preprocess the image with additional detail level settings
image = preprocess_image(image, blur_radius, sharpen_radius, noise_reduction, detail_level, edge_method, color_quantization, enhance_with_ai, remove_bg)
# Upscale the image if needed
if upscale_factor > 1:
new_size = (int(image.width * upscale_factor), int(image.height * upscale_factor))
image = image.resize(new_size, Image.LANCZOS)
# Convert Gradio image to bytes for vtracer compatibility
img_byte_array = io.BytesIO()
image.save(img_byte_array, format='PNG')
img_bytes = img_byte_array.getvalue()
# Perform the conversion
svg_str = vtracer.convert_raw_image_to_svg(
img_bytes,
img_format='png',
colormode=color_mode.lower(),
hierarchical=hierarchical.lower(),
mode=mode.lower(),
filter_speckle=int(filter_speckle),
color_precision=int(color_precision),
layer_difference=int(layer_difference),
corner_threshold=int(corner_threshold),
length_threshold=float(length_threshold),
max_iterations=int(max_iterations),
splice_threshold=int(splice_threshold),
path_precision=int(path_precision)
)
# Save the SVG string to a temporary file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.svg')
temp_file.write(svg_str.encode('utf-8'))
temp_file.close()
# Display the SVG in the Gradio interface and provide the download link
svg_html = f'<svg viewBox="0 0 {image.width} {image.height}">{svg_str}</svg>'
return gr.HTML(svg_html), temp_file.name
except Exception as e:
print(f"Error during vectorization: {e}")
return f"Error: {e}", None
# Gradio interface
iface = gr.Blocks()
with iface:
gr.Markdown("# Super-Advanced Image to SVG Converter with Enhanced Models")
with gr.Row():
image_input = gr.Image(type="pil", label="Upload Image")
blur_radius_input = gr.Slider(minimum=0, maximum=10, value=0, step=0.1, label="Blur Radius (for smoothing)")
sharpen_radius_input = gr.Slider(minimum=0, maximum=5, value=0, step=0.1, label="Sharpen Radius")
noise_reduction_input = gr.Slider(minimum=0, maximum=30, value=0, step=1, label="Noise Reduction")
enhance_with_ai_input = gr.Checkbox(label="AI Edge Enhance", value=False)
remove_bg_input = gr.Checkbox(label="Remove Background", value=False)
upscale_factor_input = gr.Slider(minimum=1, maximum=4, value=1, step=0.1, label="Upscale Factor (1 = No Upscaling)")
with gr.Row():
detail_level_input = gr.Slider(minimum=0, maximum=10, value=5, step=1, label="Detail Level")
edge_method_input = gr.Radio(choices=["Canny", "Sobel", "Scharr", "Prewitt"], value="Canny", label="Edge Detection Method")
color_quantization_input = gr.Slider(minimum=2, maximum=64, value=0, step=2, label="Color Quantization (0 to disable)")
with gr.Row():
color_mode_input = gr.Radio(choices=["Color", "Binary"], value="Color", label="Color Mode")
hierarchical_input = gr.Radio(choices=["Stacked", "Cutout"], value="Stacked", label="Hierarchical")
mode_input = gr.Radio(choices=["Spline", "Polygon", "None"], value="Spline", label="Mode")
with gr.Row():
filter_speckle_input = gr.Slider(minimum=1, maximum=100, value=4, step=1, label="Filter Speckle")
color_precision_input = gr.Slider(minimum=1, maximum=100, value=6, step=1, label="Color Precision")
layer_difference_input = gr.Slider(minimum=1, maximum=100, value=16, step=1, label="Layer Difference")
with gr.Row():
corner_threshold_input = gr.Slider(minimum=1, maximum=100, value=60, step=1, label="Corner Threshold")
length_threshold_input = gr.Slider(minimum=1, maximum=100, value=4.0, step=0.5, label="Length Threshold")
max_iterations_input = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Max Iterations")
with gr.Row():
splice_threshold_input = gr.Slider(minimum=1, maximum=100, value=45, step=1, label="Splice Threshold")
path_precision_input = gr.Slider(minimum=1, maximum=100, value=8, step=1, label="Path Precision")
convert_button = gr.Button("Convert Image to SVG")
svg_output = gr.HTML(label="SVG Output")
download_output = gr.File(label="Download SVG")
convert_button.click(
fn=convert_image,
inputs=[
image_input, blur_radius_input, sharpen_radius_input, noise_reduction_input, detail_level_input, edge_method_input, color_quantization_input,
color_mode_input, hierarchical_input, mode_input, filter_speckle_input, color_precision_input,
layer_difference_input, corner_threshold_input, length_threshold_input, max_iterations_input,
splice_threshold_input, path_precision_input, enhance_with_ai_input, remove_bg_input, upscale_factor_input
],
outputs=[svg_output, download_output]
)
iface.launch() |