Svg-Tracer-New / app.py
gdTharusha's picture
Update app.py
886e2c5 verified
raw
history blame
8.88 kB
import gradio as gr
from PIL import Image, ImageFilter
import numpy as np
import io
import tempfile
import vtracer
from skimage import feature, filters, morphology
import cv2
from rembg import remove
from sklearn.cluster import KMeans
def quantize_colors(image, num_colors):
"""Reduce the number of colors in an image."""
try:
image_np = np.array(image)
h, w, c = image_np.shape
image_reshaped = image_np.reshape((-1, 3))
kmeans = KMeans(n_clusters=num_colors, random_state=42).fit(image_reshaped)
new_colors = kmeans.cluster_centers_[kmeans.labels_].reshape(h, w, 3).astype(np.uint8)
return Image.fromarray(new_colors)
except Exception as e:
print(f"Error during color quantization: {e}")
raise
def preprocess_image(image, blur_radius, sharpen_radius, noise_reduction, detail_level, edge_method, color_quantization, enhance_with_ai, remove_bg):
"""Advanced preprocessing of the image before vectorization."""
try:
if blur_radius > 0:
image = image.filter(ImageFilter.GaussianBlur(blur_radius))
if sharpen_radius > 0:
image = image.filter(ImageFilter.UnsharpMask(radius=sharpen_radius, percent=150, threshold=3))
if noise_reduction > 0:
image_np = np.array(image)
image_np = cv2.fastNlMeansDenoisingColored(image_np, None, h=noise_reduction, templateWindowSize=7, searchWindowSize=21)
image = Image.fromarray(image_np)
if detail_level > 0:
sigma = max(0.5, 3.0 - (detail_level * 0.5))
image_np = np.array(image.convert('L'))
if edge_method == 'Canny':
edges = feature.canny(image_np, sigma=sigma)
elif edge_method == 'Sobel':
edges = filters.sobel(image_np)
elif edge_method == 'Scharr':
edges = filters.scharr(image_np)
else: # Prewitt
edges = filters.prewitt(image_np)
edges = morphology.dilation(edges, morphology.square(max(1, 6 - detail_level)))
edges_img = Image.fromarray((edges * 255).astype(np.uint8))
image = Image.blend(image.convert('RGB'), edges_img.convert('RGB'), alpha=0.5)
if color_quantization > 0:
image = quantize_colors(image, color_quantization)
if enhance_with_ai:
image_np = np.array(image)
# AI-based enhancement for smoothing edges without background removal
image_np = cv2.detailEnhance(image_np, sigma_s=10, sigma_r=0.15)
if remove_bg:
image_np = remove(image_np)
image = Image.fromarray(image_np)
except Exception as e:
print(f"Error during preprocessing: {e}")
raise
return image
def upscale_image(image, upscale_factor):
"""Upscale the image before further processing."""
try:
if upscale_factor > 1:
new_size = (int(image.width * upscale_factor), int(image.height * upscale_factor))
image = image.resize(new_size, Image.LANCZOS)
return image
except Exception as e:
print(f"Error during upscaling: {e}")
raise
def convert_image(image, blur_radius, sharpen_radius, noise_reduction, detail_level, edge_method, color_quantization,
color_mode, hierarchical, mode, filter_speckle, color_precision, layer_difference,
corner_threshold, length_threshold, max_iterations, splice_threshold, path_precision,
enhance_with_ai, remove_bg):
"""Convert an image to SVG using vtracer with customizable and advanced parameters."""
try:
# Preprocess the image with additional detail level settings
image = preprocess_image(image, blur_radius, sharpen_radius, noise_reduction, detail_level, edge_method, color_quantization, enhance_with_ai, remove_bg)
# Convert Gradio image to bytes for vtracer compatibility
img_byte_array = io.BytesIO()
image.save(img_byte_array, format='PNG')
img_bytes = img_byte_array.getvalue()
# Perform the conversion
svg_str = vtracer.convert_raw_image_to_svg(
img_bytes,
img_format='png',
colormode=color_mode.lower(),
hierarchical=hierarchical.lower(),
mode=mode.lower(),
filter_speckle=int(filter_speckle),
color_precision=int(color_precision),
layer_difference=int(layer_difference),
corner_threshold=int(corner_threshold),
length_threshold=float(length_threshold),
max_iterations=int(max_iterations),
splice_threshold=int(splice_threshold),
path_precision=int(path_precision)
)
# Save the SVG string to a temporary file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.svg')
temp_file.write(svg_str.encode('utf-8'))
temp_file.close()
# Display the SVG in the Gradio interface and provide the download link
svg_html = f'<svg viewBox="0 0 {image.width} {image.height}">{svg_str}</svg>'
return gr.HTML(svg_html), temp_file.name
except Exception as e:
print(f"Error during vectorization: {e}")
return f"Error: {e}", None
# Gradio interface
iface = gr.Blocks()
with iface:
gr.Markdown("# Super-Advanced Image to SVG Converter with Enhanced Models")
with gr.Row():
image_input = gr.Image(type="pil", label="Upload Image")
upscale_factor_input = gr.Slider(minimum=1, maximum=4, value=1, step=0.1, label="Upscale Factor (1 = No Upscaling)")
with gr.Row():
blur_radius_input = gr.Slider(minimum=0, maximum=10, value=0, step=0.1, label="Blur Radius (for smoothing)")
sharpen_radius_input = gr.Slider(minimum=0, maximum=5, value=0, step=0.1, label="Sharpen Radius")
noise_reduction_input = gr.Slider(minimum=0, maximum=30, value=0, step=1, label="Noise Reduction")
enhance_with_ai_input = gr.Checkbox(label="AI Edge Enhance", value=False)
remove_bg_input = gr.Checkbox(label="Remove Background", value=False)
with gr.Row():
detail_level_input = gr.Slider(minimum=0, maximum=10, value=5, step=1, label="Detail Level")
edge_method_input = gr.Radio(choices=["Canny", "Sobel", "Scharr", "Prewitt"], value="Canny", label="Edge Detection Method")
color_quantization_input = gr.Slider(minimum=2, maximum=64, value=0, step=2, label="Color Quantization (0 to disable)")
with gr.Row():
color_mode_input = gr.Radio(choices=["Color", "Binary"], value="Color", label="Color Mode")
hierarchical_input = gr.Radio(choices=["Stacked", "Cutout"], value="Stacked", label="Hierarchical")
mode_input = gr.Radio(choices=["Spline", "Polygon", "None"], value="Spline", label="Mode")
with gr.Row():
filter_speckle_input = gr.Slider(minimum=1, maximum=100, value=4, step=1, label="Filter Speckle")
color_precision_input = gr.Slider(minimum=1, maximum=100, value=6, step=1, label="Color Precision")
layer_difference_input = gr.Slider(minimum=1, maximum=100, value=16, step=1, label="Layer Difference")
with gr.Row():
corner_threshold_input = gr.Slider(minimum=1, maximum=100, value=60, step=1, label="Corner Threshold")
length_threshold_input = gr.Slider(minimum=1, maximum=100, value=4.0, step=0.5, label="Length Threshold")
max_iterations_input = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Max Iterations")
with gr.Row():
splice_threshold_input = gr.Slider(minimum=1, maximum=100, value=45, step=1, label="Splice Threshold")
path_precision_input = gr.Slider(minimum=1, maximum=100, value=8, step=1, label="Path Precision")
def process_and_convert(image, upscale_factor, *args):
"""Handles upscaling and then calls the convert_image function."""
image = upscale_image(image, upscale_factor)
return convert_image(image, *args)
convert_button = gr.Button("Convert Image to SVG")
svg_output = gr.HTML(label="SVG Output")
download_output = gr.File(label="Download SVG")
convert_button.click(
fn=process_and_convert,
inputs=[
image_input, upscale_factor_input, blur_radius_input, sharpen_radius_input, noise_reduction_input, detail_level_input, edge_method_input, color_quantization_input,
color_mode_input, hierarchical_input, mode_input, filter_speckle_input, color_precision_input, layer_difference_input,
corner_threshold_input, length_threshold_input, max_iterations_input, splice_threshold_input, path_precision_input,
enhance_with_ai_input, remove_bg_input
],
outputs=[svg_output, download_output]
)
iface.launch()