import gradio as gr from PIL import Image, ImageFilter import numpy as np import io import tempfile import vtracer from skimage import feature, filters, morphology import cv2 from rembg import remove from sklearn.cluster import KMeans def quantize_colors(image, num_colors): """Reduce the number of colors in an image.""" try: image_np = np.array(image) h, w, c = image_np.shape image_reshaped = image_np.reshape((-1, 3)) kmeans = KMeans(n_clusters=num_colors, random_state=42).fit(image_reshaped) new_colors = kmeans.cluster_centers_[kmeans.labels_].reshape(h, w, 3).astype(np.uint8) return Image.fromarray(new_colors) except Exception as e: print(f"Error during color quantization: {e}") raise def preprocess_image(image, blur_radius, sharpen_radius, noise_reduction, detail_level, edge_method, color_quantization, enhance_with_ai, remove_bg): """Advanced preprocessing of the image before vectorization.""" try: if blur_radius > 0: image = image.filter(ImageFilter.GaussianBlur(blur_radius)) if sharpen_radius > 0: image = image.filter(ImageFilter.UnsharpMask(radius=sharpen_radius, percent=150, threshold=3)) if noise_reduction > 0: image_np = np.array(image) image_np = cv2.fastNlMeansDenoisingColored(image_np, None, h=noise_reduction, templateWindowSize=7, searchWindowSize=21) image = Image.fromarray(image_np) if detail_level > 0: sigma = max(0.5, 3.0 - (detail_level * 0.5)) image_np = np.array(image.convert('L')) if edge_method == 'Canny': edges = feature.canny(image_np, sigma=sigma) elif edge_method == 'Sobel': edges = filters.sobel(image_np) elif edge_method == 'Scharr': edges = filters.scharr(image_np) else: # Prewitt edges = filters.prewitt(image_np) edges = morphology.dilation(edges, morphology.square(max(1, 6 - detail_level))) edges_img = Image.fromarray((edges * 255).astype(np.uint8)) image = Image.blend(image.convert('RGB'), edges_img.convert('RGB'), alpha=0.5) if color_quantization > 0: image = quantize_colors(image, color_quantization) if enhance_with_ai: image_np = np.array(image) # AI-based enhancement for smoothing edges without background removal image_np = cv2.detailEnhance(image_np, sigma_s=10, sigma_r=0.15) if remove_bg: image_np = remove(image_np) image = Image.fromarray(image_np) except Exception as e: print(f"Error during preprocessing: {e}") raise return image def upscale_image(image, upscale_factor): """Upscale the image before further processing.""" try: if upscale_factor > 1: new_size = (int(image.width * upscale_factor), int(image.height * upscale_factor)) image = image.resize(new_size, Image.LANCZOS) return image except Exception as e: print(f"Error during upscaling: {e}") raise def convert_image(image, blur_radius, sharpen_radius, noise_reduction, detail_level, edge_method, color_quantization, color_mode, hierarchical, mode, filter_speckle, color_precision, layer_difference, corner_threshold, length_threshold, max_iterations, splice_threshold, path_precision, enhance_with_ai, remove_bg): """Convert an image to SVG using vtracer with customizable and advanced parameters.""" try: # Preprocess the image with additional detail level settings image = preprocess_image(image, blur_radius, sharpen_radius, noise_reduction, detail_level, edge_method, color_quantization, enhance_with_ai, remove_bg) # Convert Gradio image to bytes for vtracer compatibility img_byte_array = io.BytesIO() image.save(img_byte_array, format='PNG') img_bytes = img_byte_array.getvalue() # Perform the conversion svg_str = vtracer.convert_raw_image_to_svg( img_bytes, img_format='png', colormode=color_mode.lower(), hierarchical=hierarchical.lower(), mode=mode.lower(), filter_speckle=int(filter_speckle), color_precision=int(color_precision), layer_difference=int(layer_difference), corner_threshold=int(corner_threshold), length_threshold=float(length_threshold), max_iterations=int(max_iterations), splice_threshold=int(splice_threshold), path_precision=int(path_precision) ) # Save the SVG string to a temporary file temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.svg') temp_file.write(svg_str.encode('utf-8')) temp_file.close() # Display the SVG in the Gradio interface and provide the download link svg_html = f'{svg_str}' return gr.HTML(svg_html), temp_file.name except Exception as e: print(f"Error during vectorization: {e}") return f"Error: {e}", None # Gradio interface iface = gr.Blocks() with iface: gr.Markdown("# Super-Advanced Image to SVG Converter with Enhanced Models") with gr.Row(): image_input = gr.Image(type="pil", label="Upload Image") upscale_factor_input = gr.Slider(minimum=1, maximum=4, value=1, step=0.1, label="Upscale Factor (1 = No Upscaling)") with gr.Row(): blur_radius_input = gr.Slider(minimum=0, maximum=10, value=0, step=0.1, label="Blur Radius (for smoothing)") sharpen_radius_input = gr.Slider(minimum=0, maximum=5, value=0, step=0.1, label="Sharpen Radius") noise_reduction_input = gr.Slider(minimum=0, maximum=30, value=0, step=1, label="Noise Reduction") enhance_with_ai_input = gr.Checkbox(label="AI Edge Enhance", value=False) remove_bg_input = gr.Checkbox(label="Remove Background", value=False) with gr.Row(): detail_level_input = gr.Slider(minimum=0, maximum=10, value=5, step=1, label="Detail Level") edge_method_input = gr.Radio(choices=["Canny", "Sobel", "Scharr", "Prewitt"], value="Canny", label="Edge Detection Method") color_quantization_input = gr.Slider(minimum=2, maximum=64, value=0, step=2, label="Color Quantization (0 to disable)") with gr.Row(): color_mode_input = gr.Radio(choices=["Color", "Binary"], value="Color", label="Color Mode") hierarchical_input = gr.Radio(choices=["Stacked", "Cutout"], value="Stacked", label="Hierarchical") mode_input = gr.Radio(choices=["Spline", "Polygon", "None"], value="Spline", label="Mode") with gr.Row(): filter_speckle_input = gr.Slider(minimum=1, maximum=100, value=4, step=1, label="Filter Speckle") color_precision_input = gr.Slider(minimum=1, maximum=100, value=6, step=1, label="Color Precision") layer_difference_input = gr.Slider(minimum=1, maximum=100, value=16, step=1, label="Layer Difference") with gr.Row(): corner_threshold_input = gr.Slider(minimum=1, maximum=100, value=60, step=1, label="Corner Threshold") length_threshold_input = gr.Slider(minimum=1, maximum=100, value=4.0, step=0.5, label="Length Threshold") max_iterations_input = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Max Iterations") with gr.Row(): splice_threshold_input = gr.Slider(minimum=1, maximum=100, value=45, step=1, label="Splice Threshold") path_precision_input = gr.Slider(minimum=1, maximum=100, value=8, step=1, label="Path Precision") def process_and_convert(image, upscale_factor, *args): """Handles upscaling and then calls the convert_image function.""" image = upscale_image(image, upscale_factor) return convert_image(image, *args) convert_button = gr.Button("Convert Image to SVG") svg_output = gr.HTML(label="SVG Output") download_output = gr.File(label="Download SVG") convert_button.click( fn=process_and_convert, inputs=[ image_input, upscale_factor_input, blur_radius_input, sharpen_radius_input, noise_reduction_input, detail_level_input, edge_method_input, color_quantization_input, color_mode_input, hierarchical_input, mode_input, filter_speckle_input, color_precision_input, layer_difference_input, corner_threshold_input, length_threshold_input, max_iterations_input, splice_threshold_input, path_precision_input, enhance_with_ai_input, remove_bg_input ], outputs=[svg_output, download_output] ) iface.launch()