add runway inpainting model with diffusers
Browse files- app.py +4 -15
- requirements.txt +1 -1
app.py
CHANGED
@@ -11,23 +11,12 @@ import torch
|
|
11 |
from torch import autocast
|
12 |
import cv2
|
13 |
from matplotlib import pyplot as plt
|
14 |
-
from inpainting import StableDiffusionInpaintingPipeline
|
15 |
from torchvision import transforms
|
16 |
-
|
17 |
-
auth_token = os.environ.get("API_TOKEN") or True
|
18 |
-
|
19 |
-
def download_image(url):
|
20 |
-
response = requests.get(url)
|
21 |
-
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
|
22 |
|
23 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
-
pipe = StableDiffusionInpaintingPipeline.from_pretrained(
|
25 |
-
"CompVis/stable-diffusion-v1-4",
|
26 |
-
revision="fp16",
|
27 |
-
torch_dtype=torch.float16,
|
28 |
-
use_auth_token=auth_token,
|
29 |
-
).to(device)
|
30 |
|
|
|
31 |
|
32 |
transform = transforms.Compose([
|
33 |
transforms.ToTensor(),
|
@@ -39,8 +28,8 @@ def predict(dict, prompt=""):
|
|
39 |
with autocast("cuda"):
|
40 |
init_image = dict["image"].convert("RGB").resize((512, 512))
|
41 |
mask = dict["mask"].convert("RGB").resize((512, 512))
|
42 |
-
|
43 |
-
return images[0]
|
44 |
|
45 |
examples = [[dict(image="init_image.png", mask="mask_image.png"), "A panda sitting on a bench"]]
|
46 |
|
|
|
11 |
from torch import autocast
|
12 |
import cv2
|
13 |
from matplotlib import pyplot as plt
|
|
|
14 |
from torchvision import transforms
|
15 |
+
from diffusers import DiffusionPipeline
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", dtype=torch.float16, revision="fp16")
|
20 |
|
21 |
transform = transforms.Compose([
|
22 |
transforms.ToTensor(),
|
|
|
28 |
with autocast("cuda"):
|
29 |
init_image = dict["image"].convert("RGB").resize((512, 512))
|
30 |
mask = dict["mask"].convert("RGB").resize((512, 512))
|
31 |
+
output = pipe(prompt = prompt, image=init_image, mask_image=mask, strength=0.8,num_inference_steps=20)
|
32 |
+
return output.images[0]
|
33 |
|
34 |
examples = [[dict(image="init_image.png", mask="mask_image.png"), "A panda sitting on a bench"]]
|
35 |
|
requirements.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
2 |
torch
|
3 |
torchvision
|
4 |
-
diffusers
|
5 |
transformers
|
6 |
ftfy
|
7 |
numpy
|
|
|
1 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
2 |
torch
|
3 |
torchvision
|
4 |
+
git+https://github.com/huggingface/diffusers.git
|
5 |
transformers
|
6 |
ftfy
|
7 |
numpy
|