File size: 6,003 Bytes
c8d52e7
 
 
 
 
 
 
ffad30c
c8d52e7
 
 
 
 
 
192c48a
 
 
 
 
 
c8d52e7
 
 
60407c7
c8d52e7
 
 
 
 
 
 
2dd1081
c8d52e7
2dd1081
 
 
 
 
c8d52e7
 
 
2dd1081
 
 
 
 
 
 
 
 
 
 
c8d52e7
2dd1081
 
c8d52e7
 
 
 
 
 
ffad30c
c8d52e7
 
 
 
 
 
ffad30c
 
 
c8d52e7
 
 
 
 
 
 
 
 
 
 
246dd98
 
 
 
 
 
 
 
 
 
c8d52e7
 
 
 
 
 
 
 
 
 
 
 
 
 
be483e3
c8d52e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import numpy as np
from PIL import Image
from typing import List
from datetime import datetime

from tensorflow import keras
from tensorflow.keras import optimizers, models, mixed_precision

from wandb.keras import WandbCallback

from .dataloader import LowLightDataset
from .models import build_mirnet_model
from .losses import CharbonnierLoss
from ..commons import (
    peak_signal_noise_ratio,
    closest_number,
    init_wandb,
    download_lol_dataset,
)


class MIRNet:
    def __init__(self, experiment_name=None, wandb_api_key=None) -> None:
        self.experiment_name = experiment_name
        if wandb_api_key is not None:
            init_wandb("mirnet", experiment_name, wandb_api_key)
            self.using_wandb = True
        else:
            self.using_wandb = False

    def build_datasets(
        self,
        image_size: int = 256,
        dataset_label: str = "lol",
        apply_random_horizontal_flip: bool = True,
        apply_random_vertical_flip: bool = True,
        apply_random_rotation: bool = True,
        val_split: float = 0.2,
        batch_size: int = 16,
    ):
        if dataset_label == "lol":
            (self.low_images, self.enhanced_images), (
                self.test_low_images,
                self.test_enhanced_images,
            ) = download_lol_dataset()
        self.data_loader = LowLightDataset(
            image_size=image_size,
            apply_random_horizontal_flip=apply_random_horizontal_flip,
            apply_random_vertical_flip=apply_random_vertical_flip,
            apply_random_rotation=apply_random_rotation,
        )
        (self.train_dataset, self.val_dataset) = self.data_loader.get_datasets(
            low_light_images=self.low_images,
            enhanced_images=self.enhanced_images,
            val_split=val_split,
            batch_size=batch_size,
        )

    def build_model(
        self,
        use_mixed_precision: bool = False,
        num_recursive_residual_groups: int = 3,
        num_multi_scale_residual_blocks: int = 2,
        channels: int = 64,
        learning_rate: float = 1e-4,
        epsilon: float = 1e-3,
    ):
        if use_mixed_precision:
            policy = mixed_precision.Policy("mixed_float16")
            mixed_precision.set_global_policy(policy)
        self.model = build_mirnet_model(
            num_rrg=num_recursive_residual_groups,
            num_mrb=num_multi_scale_residual_blocks,
            channels=channels,
        )
        self.model.compile(
            optimizer=optimizers.Adam(learning_rate=learning_rate),
            loss=CharbonnierLoss(epsilon=epsilon),
            metrics=[peak_signal_noise_ratio],
        )

    def load_model(
        self, filepath, custom_objects=None, compile=True, options=None
    ) -> None:
        self.model = models.load_model(
            filepath=filepath,
            custom_objects=custom_objects,
            compile=compile,
            options=options,
        )

    def save_weights(self, filepath, overwrite=True, save_format=None, options=None):
        self.model.save_weights(
            filepath, overwrite=overwrite, save_format=save_format, options=options
        )

    def load_weights(self, filepath, by_name=False, skip_mismatch=False, options=None):
        self.model.load_weights(
            filepath, by_name=by_name, skip_mismatch=skip_mismatch, options=options
        )

    def train(self, epochs: int):
        log_dir = os.path.join(
            self.experiment_name,
            "logs",
            datetime.now().strftime("%Y%m%d-%H%M%S"),
        )
        tensorboard_callback = keras.callbacks.TensorBoard(log_dir, histogram_freq=1)
        model_checkpoint_callback = keras.callbacks.ModelCheckpoint(
            os.path.join(self.experiment_name, "weights.h5"),
            save_best_only=True,
            save_weights_only=True,
        )
        reduce_lr_callback = keras.callbacks.ReduceLROnPlateau(
            monitor="val_peak_signal_noise_ratio",
            factor=0.5,
            patience=5,
            verbose=1,
            min_delta=1e-7,
            mode="max",
        )
        callbacks = [
            tensorboard_callback,
            model_checkpoint_callback,
            reduce_lr_callback,
        ]
        if self.using_wandb:
            callbacks += [WandbCallback()]
        history = self.model.fit(
            self.train_dataset,
            validation_data=self.val_dataset,
            epochs=epochs,
            callbacks=callbacks,
        )
        return history

    def infer(
        self,
        original_image,
        image_resize_factor: float = 1.0,
        resize_output: bool = False,
    ):
        width, height = original_image.size
        target_width, target_height = (
            closest_number(width // image_resize_factor, 4),
            closest_number(height // image_resize_factor, 4),
        )
        original_image = original_image.resize(
            (target_width, target_height), Image.ANTIALIAS
        )
        image = keras.preprocessing.image.img_to_array(original_image)
        image = image.astype("float32") / 255.0
        image = np.expand_dims(image, axis=0)
        output = self.model.predict(image)
        output_image = output[0] * 255.0
        output_image = output_image.clip(0, 255)
        output_image = output_image.reshape(
            (np.shape(output_image)[0], np.shape(output_image)[1], 3)
        )
        output_image = Image.fromarray(np.uint8(output_image))
        original_image = Image.fromarray(np.uint8(original_image))
        if resize_output:
            output_image = output_image.resize((width, height), Image.ANTIALIAS)
        return output_image

    def infer_from_file(
        self,
        original_image_file: str,
        image_resize_factor: float = 1.0,
        resize_output: bool = False,
    ):
        original_image = Image.open(original_image_file)
        return self.infer(original_image, image_resize_factor, resize_output)