Spaces:
Sleeping
Sleeping
geekyrakshit
commited on
Commit
·
0d77bb1
1
Parent(s):
77a97ce
add: MedCPTRetriever
Browse files
docs/retreival/medcpt.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# MedCPT Retrieval
|
2 |
+
|
3 |
+
::: medrag_multi_modal.retrieval.medcpt_retrieval
|
medrag_multi_modal/retrieval/__init__.py
CHANGED
@@ -1,10 +1,13 @@
|
|
1 |
from .bm25s_retrieval import BM25sRetriever
|
2 |
from .colpali_retrieval import CalPaliRetriever
|
3 |
-
from .
|
|
|
|
|
4 |
|
5 |
__all__ = [
|
6 |
"CalPaliRetriever",
|
7 |
"BM25sRetriever",
|
8 |
"ContrieverRetriever",
|
9 |
"SimilarityMetric",
|
|
|
10 |
]
|
|
|
1 |
from .bm25s_retrieval import BM25sRetriever
|
2 |
from .colpali_retrieval import CalPaliRetriever
|
3 |
+
from .common import SimilarityMetric
|
4 |
+
from .contriever_retrieval import ContrieverRetriever
|
5 |
+
from .medcpt_retrieval import MedCPTRetriever
|
6 |
|
7 |
__all__ = [
|
8 |
"CalPaliRetriever",
|
9 |
"BM25sRetriever",
|
10 |
"ContrieverRetriever",
|
11 |
"SimilarityMetric",
|
12 |
+
"MedCPTRetriever",
|
13 |
]
|
medrag_multi_modal/retrieval/common.py
CHANGED
@@ -29,6 +29,7 @@ def argsort_scores(scores: list[float], descending: bool = False):
|
|
29 |
|
30 |
def save_vector_index(
|
31 |
vector_index: torch.Tensor,
|
|
|
32 |
index_name: str,
|
33 |
metadata: dict,
|
34 |
filename: str = "vector_index.safetensors",
|
@@ -37,7 +38,7 @@ def save_vector_index(
|
|
37 |
if wandb.run:
|
38 |
artifact = wandb.Artifact(
|
39 |
name=index_name,
|
40 |
-
type=
|
41 |
metadata=metadata,
|
42 |
)
|
43 |
artifact.add_file(filename)
|
|
|
29 |
|
30 |
def save_vector_index(
|
31 |
vector_index: torch.Tensor,
|
32 |
+
type: str,
|
33 |
index_name: str,
|
34 |
metadata: dict,
|
35 |
filename: str = "vector_index.safetensors",
|
|
|
38 |
if wandb.run:
|
39 |
artifact = wandb.Artifact(
|
40 |
name=index_name,
|
41 |
+
type=type,
|
42 |
metadata=metadata,
|
43 |
)
|
44 |
artifact.add_file(filename)
|
medrag_multi_modal/retrieval/contriever_retrieval.py
CHANGED
@@ -13,10 +13,8 @@ from transformers import (
|
|
13 |
PreTrainedTokenizerFast,
|
14 |
)
|
15 |
|
16 |
-
import
|
17 |
-
|
18 |
-
from ..utils import get_wandb_artifact, get_torch_backend
|
19 |
-
from .common import SimilarityMetric, argsort_scores, mean_pooling
|
20 |
|
21 |
|
22 |
class ContrieverRetriever(weave.Model):
|
@@ -80,7 +78,10 @@ class ContrieverRetriever(weave.Model):
|
|
80 |
weave.init(project_name="ml-colabs/medrag-multi-modal")
|
81 |
wandb.init(project="medrag-multi-modal", entity="ml-colabs", job_type="contriever-index")
|
82 |
retriever = ContrieverRetriever(model_name="facebook/contriever")
|
83 |
-
retriever.index(
|
|
|
|
|
|
|
84 |
```
|
85 |
|
86 |
Args:
|
@@ -95,17 +96,12 @@ class ContrieverRetriever(weave.Model):
|
|
95 |
vector_index = self.encode(corpus)
|
96 |
self._vector_index = vector_index
|
97 |
if index_name:
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
100 |
)
|
101 |
-
if wandb.run:
|
102 |
-
artifact = wandb.Artifact(
|
103 |
-
name=index_name,
|
104 |
-
type="contriever-index",
|
105 |
-
metadata={"model_name": self.model_name},
|
106 |
-
)
|
107 |
-
artifact.add_file("vector_index.safetensors")
|
108 |
-
artifact.save()
|
109 |
|
110 |
@classmethod
|
111 |
def from_wandb_artifact(cls, chunk_dataset_name: str, index_artifact_address: str):
|
|
|
13 |
PreTrainedTokenizerFast,
|
14 |
)
|
15 |
|
16 |
+
from ..utils import get_torch_backend, get_wandb_artifact
|
17 |
+
from .common import SimilarityMetric, argsort_scores, mean_pooling, save_vector_index
|
|
|
|
|
18 |
|
19 |
|
20 |
class ContrieverRetriever(weave.Model):
|
|
|
78 |
weave.init(project_name="ml-colabs/medrag-multi-modal")
|
79 |
wandb.init(project="medrag-multi-modal", entity="ml-colabs", job_type="contriever-index")
|
80 |
retriever = ContrieverRetriever(model_name="facebook/contriever")
|
81 |
+
retriever.index(
|
82 |
+
chunk_dataset_name="grays-anatomy-chunks:v0",
|
83 |
+
index_name="grays-anatomy-contriever",
|
84 |
+
)
|
85 |
```
|
86 |
|
87 |
Args:
|
|
|
96 |
vector_index = self.encode(corpus)
|
97 |
self._vector_index = vector_index
|
98 |
if index_name:
|
99 |
+
save_vector_index(
|
100 |
+
self._vector_index,
|
101 |
+
"contriever-index",
|
102 |
+
index_name,
|
103 |
+
{"model_name": self.model_name},
|
104 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
@classmethod
|
107 |
def from_wandb_artifact(cls, chunk_dataset_name: str, index_artifact_address: str):
|
medrag_multi_modal/retrieval/medcpt_retrieval.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
import safetensors
|
5 |
+
import safetensors.torch
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import weave
|
9 |
+
from transformers import (
|
10 |
+
AutoModel,
|
11 |
+
AutoTokenizer,
|
12 |
+
BertPreTrainedModel,
|
13 |
+
PreTrainedTokenizerFast,
|
14 |
+
)
|
15 |
+
|
16 |
+
from ..utils import get_torch_backend, get_wandb_artifact
|
17 |
+
from .common import SimilarityMetric, argsort_scores, save_vector_index
|
18 |
+
|
19 |
+
|
20 |
+
class MedCPTRetriever(weave.Model):
|
21 |
+
"""
|
22 |
+
A class to retrieve relevant text chunks using MedCPT models.
|
23 |
+
|
24 |
+
This class provides methods to index a dataset of text chunks and retrieve the most relevant
|
25 |
+
chunks for a given query using MedCPT models. It uses separate models for encoding queries
|
26 |
+
and articles, and supports both cosine similarity and Euclidean distance as similarity metrics.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
query_encoder_model_name (str): The name of the model used for encoding queries.
|
30 |
+
article_encoder_model_name (str): The name of the model used for encoding articles.
|
31 |
+
chunk_size (Optional[int]): The maximum length of text chunks.
|
32 |
+
vector_index (Optional[torch.Tensor]): The vector index of encoded text chunks.
|
33 |
+
chunk_dataset (Optional[list[dict]]): The dataset of text chunks.
|
34 |
+
"""
|
35 |
+
|
36 |
+
query_encoder_model_name: str
|
37 |
+
article_encoder_model_name: str
|
38 |
+
chunk_size: Optional[int]
|
39 |
+
_chunk_dataset: Optional[list[dict]]
|
40 |
+
_query_tokenizer: PreTrainedTokenizerFast
|
41 |
+
_article_tokenizer: PreTrainedTokenizerFast
|
42 |
+
_query_encoder_model: BertPreTrainedModel
|
43 |
+
_article_encoder_model: BertPreTrainedModel
|
44 |
+
_vector_index: Optional[torch.Tensor]
|
45 |
+
|
46 |
+
def __init__(
|
47 |
+
self,
|
48 |
+
query_encoder_model_name: str,
|
49 |
+
article_encoder_model_name: str,
|
50 |
+
chunk_size: Optional[int] = None,
|
51 |
+
vector_index: Optional[torch.Tensor] = None,
|
52 |
+
chunk_dataset: Optional[list[dict]] = None,
|
53 |
+
):
|
54 |
+
super().__init__(
|
55 |
+
query_encoder_model_name=query_encoder_model_name,
|
56 |
+
article_encoder_model_name=article_encoder_model_name,
|
57 |
+
chunk_size=chunk_size,
|
58 |
+
)
|
59 |
+
self._query_tokenizer = AutoTokenizer.from_pretrained(
|
60 |
+
self.query_encoder_model_name
|
61 |
+
)
|
62 |
+
self._article_tokenizer = AutoTokenizer.from_pretrained(
|
63 |
+
self.article_encoder_model_name
|
64 |
+
)
|
65 |
+
self._query_encoder_model = AutoModel.from_pretrained(
|
66 |
+
self.query_encoder_model_name
|
67 |
+
)
|
68 |
+
self._article_encoder_model = AutoModel.from_pretrained(
|
69 |
+
self.article_encoder_model_name
|
70 |
+
)
|
71 |
+
self._chunk_dataset = chunk_dataset
|
72 |
+
self._vector_index = vector_index
|
73 |
+
|
74 |
+
def index(self, chunk_dataset_name: str, index_name: Optional[str] = None):
|
75 |
+
"""
|
76 |
+
Indexes a dataset of text chunks and optionally saves the vector index.
|
77 |
+
|
78 |
+
This method retrieves a dataset of text chunks from a Weave reference, encodes the text
|
79 |
+
chunks using the article encoder model, and stores the resulting vector index. If an
|
80 |
+
index name is provided, the vector index is saved to a file using the `save_vector_index`
|
81 |
+
function.
|
82 |
+
|
83 |
+
!!! example "Example Usage"
|
84 |
+
```python
|
85 |
+
import weave
|
86 |
+
from dotenv import load_dotenv
|
87 |
+
|
88 |
+
import wandb
|
89 |
+
from medrag_multi_modal.retrieval import MedCPTRetriever
|
90 |
+
|
91 |
+
load_dotenv()
|
92 |
+
weave.init(project_name="ml-colabs/medrag-multi-modal")
|
93 |
+
wandb.init(project="medrag-multi-modal", entity="ml-colabs", job_type="medcpt-index")
|
94 |
+
retriever = MedCPTRetriever(
|
95 |
+
query_encoder_model_name="ncbi/MedCPT-Query-Encoder",
|
96 |
+
article_encoder_model_name="ncbi/MedCPT-Article-Encoder",
|
97 |
+
)
|
98 |
+
retriever.index(
|
99 |
+
chunk_dataset_name="grays-anatomy-chunks:v0",
|
100 |
+
index_name="grays-anatomy-medcpt",
|
101 |
+
)
|
102 |
+
```
|
103 |
+
|
104 |
+
Args:
|
105 |
+
chunk_dataset_name (str): The name of the dataset containing text chunks to be indexed.
|
106 |
+
index_name (Optional[str]): The name to use when saving the vector index. If not provided,
|
107 |
+
the vector index is not saved.
|
108 |
+
|
109 |
+
"""
|
110 |
+
self._chunk_dataset = weave.ref(chunk_dataset_name).get().rows
|
111 |
+
corpus = [row["text"] for row in self._chunk_dataset]
|
112 |
+
with torch.no_grad():
|
113 |
+
encoded = self._article_tokenizer(
|
114 |
+
corpus,
|
115 |
+
truncation=True,
|
116 |
+
padding=True,
|
117 |
+
return_tensors="pt",
|
118 |
+
max_length=self.chunk_size,
|
119 |
+
)
|
120 |
+
vector_index = (
|
121 |
+
self._article_encoder_model(**encoded)
|
122 |
+
.last_hidden_state[:, 0, :]
|
123 |
+
.contiguous()
|
124 |
+
)
|
125 |
+
self._vector_index = vector_index
|
126 |
+
if index_name:
|
127 |
+
save_vector_index(
|
128 |
+
self._vector_index,
|
129 |
+
"medcpt-index",
|
130 |
+
index_name,
|
131 |
+
{
|
132 |
+
"query_encoder_model_name": self.query_encoder_model_name,
|
133 |
+
"article_encoder_model_name": self.article_encoder_model_name,
|
134 |
+
"chunk_size": self.chunk_size,
|
135 |
+
},
|
136 |
+
)
|
137 |
+
|
138 |
+
@classmethod
|
139 |
+
def from_wandb_artifact(cls, chunk_dataset_name: str, index_artifact_address: str):
|
140 |
+
"""
|
141 |
+
Initializes an instance of the class from a Weave artifact.
|
142 |
+
|
143 |
+
This method retrieves a precomputed vector index and its associated metadata from a Weave artifact
|
144 |
+
stored in Weights & Biases (wandb). It then loads the vector index into memory and initializes an
|
145 |
+
instance of the class with the retrieved model names, vector index, and chunk dataset.
|
146 |
+
|
147 |
+
!!! example "Example Usage"
|
148 |
+
```python
|
149 |
+
import weave
|
150 |
+
from dotenv import load_dotenv
|
151 |
+
|
152 |
+
import wandb
|
153 |
+
from medrag_multi_modal.retrieval import MedCPTRetriever
|
154 |
+
|
155 |
+
load_dotenv()
|
156 |
+
weave.init(project_name="ml-colabs/medrag-multi-modal")
|
157 |
+
retriever = MedCPTRetriever.from_wandb_artifact(
|
158 |
+
chunk_dataset_name="grays-anatomy-chunks:v0",
|
159 |
+
index_artifact_address="ml-colabs/medrag-multi-modal/grays-anatomy-medcpt:v0",
|
160 |
+
)
|
161 |
+
```
|
162 |
+
|
163 |
+
Args:
|
164 |
+
chunk_dataset_name (str): The name of the dataset containing text chunks to be indexed.
|
165 |
+
index_artifact_address (str): The address of the Weave artifact containing the precomputed vector index.
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
An instance of the class initialized with the retrieved model name, vector index, and chunk dataset.
|
169 |
+
"""
|
170 |
+
artifact_dir, metadata = get_wandb_artifact(
|
171 |
+
index_artifact_address, "medcpt-index", get_metadata=True
|
172 |
+
)
|
173 |
+
with safetensors.torch.safe_open(
|
174 |
+
os.path.join(artifact_dir, "vector_index.safetensors"), framework="pt"
|
175 |
+
) as f:
|
176 |
+
vector_index = f.get_tensor("vector_index")
|
177 |
+
device = torch.device(get_torch_backend())
|
178 |
+
vector_index = vector_index.to(device)
|
179 |
+
chunk_dataset = [dict(row) for row in weave.ref(chunk_dataset_name).get().rows]
|
180 |
+
return cls(
|
181 |
+
query_encoder_model_name=metadata["query_encoder_model_name"],
|
182 |
+
article_encoder_model_name=metadata["article_encoder_model_name"],
|
183 |
+
chunk_size=metadata["chunk_size"],
|
184 |
+
vector_index=vector_index,
|
185 |
+
chunk_dataset=chunk_dataset,
|
186 |
+
)
|
187 |
+
|
188 |
+
@weave.op()
|
189 |
+
def retrieve(
|
190 |
+
self,
|
191 |
+
query: str,
|
192 |
+
top_k: int = 2,
|
193 |
+
metric: SimilarityMetric = SimilarityMetric.COSINE,
|
194 |
+
):
|
195 |
+
"""
|
196 |
+
Retrieves the top-k most relevant chunks for a given query using the specified similarity metric.
|
197 |
+
|
198 |
+
This method encodes the input query into an embedding and computes similarity scores between
|
199 |
+
the query embedding and the precomputed vector index. The similarity metric can be either
|
200 |
+
cosine similarity or Euclidean distance. The top-k chunks with the highest similarity scores
|
201 |
+
are returned as a list of dictionaries, each containing a chunk and its corresponding score.
|
202 |
+
|
203 |
+
!!! example "Example Usage"
|
204 |
+
```python
|
205 |
+
import weave
|
206 |
+
from dotenv import load_dotenv
|
207 |
+
|
208 |
+
import wandb
|
209 |
+
from medrag_multi_modal.retrieval import MedCPTRetriever
|
210 |
+
|
211 |
+
load_dotenv()
|
212 |
+
weave.init(project_name="ml-colabs/medrag-multi-modal")
|
213 |
+
retriever = MedCPTRetriever.from_wandb_artifact(
|
214 |
+
chunk_dataset_name="grays-anatomy-chunks:v0",
|
215 |
+
index_artifact_address="ml-colabs/medrag-multi-modal/grays-anatomy-medcpt:v0",
|
216 |
+
)
|
217 |
+
retriever.retrieve(query="What are Ribosomes?")
|
218 |
+
```
|
219 |
+
|
220 |
+
Args:
|
221 |
+
query (str): The input query string to search for relevant chunks.
|
222 |
+
top_k (int, optional): The number of top relevant chunks to retrieve. Defaults to 2.
|
223 |
+
metric (SimilarityMetric, optional): The similarity metric to use for scoring. Defaults to cosine similarity.
|
224 |
+
|
225 |
+
Returns:
|
226 |
+
list: A list of dictionaries, each containing a retrieved chunk and its relevance score.
|
227 |
+
"""
|
228 |
+
query = [query]
|
229 |
+
device = torch.device(get_torch_backend())
|
230 |
+
with torch.no_grad():
|
231 |
+
encoded = self._query_tokenizer(
|
232 |
+
query,
|
233 |
+
truncation=True,
|
234 |
+
padding=True,
|
235 |
+
return_tensors="pt",
|
236 |
+
)
|
237 |
+
query_embedding = self._query_encoder_model(**encoded).last_hidden_state[
|
238 |
+
:, 0, :
|
239 |
+
]
|
240 |
+
query_embedding = query_embedding.to(device)
|
241 |
+
if metric == SimilarityMetric.EUCLIDEAN:
|
242 |
+
scores = torch.squeeze(query_embedding @ self._vector_index.T)
|
243 |
+
else:
|
244 |
+
scores = F.cosine_similarity(query_embedding, self._vector_index)
|
245 |
+
scores = scores.cpu().numpy().tolist()
|
246 |
+
scores = argsort_scores(scores, descending=True)[:top_k]
|
247 |
+
retrieved_chunks = []
|
248 |
+
for score in scores:
|
249 |
+
retrieved_chunks.append(
|
250 |
+
{
|
251 |
+
"chunk": self._chunk_dataset[score["original_index"]],
|
252 |
+
"score": score["item"],
|
253 |
+
}
|
254 |
+
)
|
255 |
+
return retrieved_chunks
|
medrag_multi_modal/utils.py
CHANGED
@@ -1,9 +1,12 @@
|
|
1 |
import torch
|
|
|
2 |
import wandb
|
3 |
|
4 |
|
5 |
def get_wandb_artifact(
|
6 |
-
artifact_name: str,
|
|
|
|
|
7 |
) -> str:
|
8 |
if wandb.run:
|
9 |
artifact = wandb.use_artifact(artifact_name, type=artifact_type)
|
|
|
1 |
import torch
|
2 |
+
|
3 |
import wandb
|
4 |
|
5 |
|
6 |
def get_wandb_artifact(
|
7 |
+
artifact_name: str,
|
8 |
+
artifact_type: str,
|
9 |
+
get_metadata: bool = False,
|
10 |
) -> str:
|
11 |
if wandb.run:
|
12 |
artifact = wandb.use_artifact(artifact_name, type=artifact_type)
|
mkdocs.yml
CHANGED
@@ -81,5 +81,6 @@ nav:
|
|
81 |
- BM25-Sparse: 'retreival/bm25s.md'
|
82 |
- ColPali: 'retreival/colpali.md'
|
83 |
- Contriever: 'retreival/contriever.md'
|
|
|
84 |
|
85 |
repo_url: https://github.com/soumik12345/medrag-multi-modal
|
|
|
81 |
- BM25-Sparse: 'retreival/bm25s.md'
|
82 |
- ColPali: 'retreival/colpali.md'
|
83 |
- Contriever: 'retreival/contriever.md'
|
84 |
+
- MedCPT: 'retreival/medcpt.md'
|
85 |
|
86 |
repo_url: https://github.com/soumik12345/medrag-multi-modal
|