File size: 23,344 Bytes
f8690bd
 
7f50b6e
f8690bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f50b6e
 
 
 
 
f8690bd
 
7f50b6e
f8690bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f50b6e
 
 
 
 
 
 
 
 
 
f8690bd
 
 
 
 
 
7f50b6e
 
 
 
 
 
 
 
 
 
f8690bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f50b6e
f8690bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f50b6e
f8690bd
 
 
 
7f50b6e
f8690bd
 
 
 
7f50b6e
f8690bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1372234
f8690bd
 
 
7f50b6e
f8690bd
7f50b6e
 
 
 
 
 
f8690bd
7f50b6e
 
 
 
 
 
 
 
 
f8690bd
7f50b6e
f8690bd
7f50b6e
 
 
 
 
f8690bd
7f50b6e
 
 
 
 
f8690bd
7f50b6e
 
 
 
 
f8690bd
7f50b6e
 
 
 
 
f8690bd
7f50b6e
f8690bd
7f50b6e
 
 
 
f8690bd
7f50b6e
 
 
 
 
 
 
 
 
 
 
 
f8690bd
7f50b6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8690bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
import gradio as gr

from ecologits.tracers.utils import llm_impacts, _avg
from ecologits.impacts.llm import compute_llm_impacts as compute_llm_impacts_expert
from ecologits.model_repository import models

from src.assets import custom_css
from src.electricity_mix import COUNTRY_CODES, find_electricity_mix
from src.content import (
    HERO_TEXT,
    ABOUT_TEXT,
    CITATION_LABEL,
    CITATION_TEXT,
    LICENCE_TEXT, METHODOLOGY_TEXT
)
from src.constants import (
    PROVIDERS,
    OPENAI_MODELS,
    ANTHROPIC_MODELS,
    COHERE_MODELS,
    META_MODELS,
    MISTRALAI_MODELS,
    PROMPTS,
    CLOSED_SOURCE_MODELS,
    MODELS,
)
from src.utils import (
    format_impacts,
    format_impacts_expert,
    format_energy_eq_physical_activity,
    PhysicalActivity,
    format_energy_eq_electric_vehicle,
    format_gwp_eq_streaming,
    format_energy_eq_electricity_production,
    EnergyProduction,
    format_gwp_eq_airplane_paris_nyc,
    format_energy_eq_electricity_consumption_ireland,
    df_elec_mix_for_plot
)
from src.scrapper import process_input

CUSTOM = "Custom"

def model_list(provider: str) -> gr.Dropdown:
    if provider == "openai":
        return gr.Dropdown(
            OPENAI_MODELS,
            label="Model",
            value=OPENAI_MODELS[0][1],
            filterable=True,
        )
    elif provider == "anthropic":
        return gr.Dropdown(
            ANTHROPIC_MODELS,
            label="Model",
            value=ANTHROPIC_MODELS[0][1],
            filterable=True,
        )
    elif provider == "cohere":
        return gr.Dropdown(
            COHERE_MODELS,
            label="Model",
            value=COHERE_MODELS[0][1],
            filterable=True,
        )
    elif provider == "huggingface_hub/meta":
        return gr.Dropdown(
            META_MODELS,
            label="Model",
            value=META_MODELS[0][1],
            filterable=True,
        )
    elif provider == "mistralai":
        return gr.Dropdown(
            MISTRALAI_MODELS,
            label="Model",
            value=MISTRALAI_MODELS[0][1],
            filterable=True,
        )


def custom():
    return CUSTOM

def model_active_params_fn(model_name: str, n_param: float):
    if model_name == CUSTOM:
        return n_param
    provider, model_name = model_name.split('/', 1)
    model = models.find_model(provider=provider, model_name=model_name)
    try: #moe with range
        return model.architecture.parameters.active.max
    except:
        try: #moe without range
            return model.architecture.parameters.active
        except:
            try: #dense with range
                return model.architecture.parameters.max
            except: #dense without range
                return model.architecture.parameters

def model_total_params_fn(model_name: str, n_param: float):
    if model_name == CUSTOM:
        return n_param
    provider, model_name = model_name.split('/', 1)
    model = models.find_model(provider=provider, model_name=model_name)
    try: #moe
        return model.architecture.parameters.total.max
    except:
        try: #dense with range
            return model.architecture.parameters.max
        except: #dense without range
            try:
                return model.architecture.parameters.total
            except:
                return model.architecture.parameters

def mix_fn(country_code: str, mix_adpe: float, mix_pe: float, mix_gwp: float):
    if country_code == CUSTOM:
        return mix_adpe, mix_pe, mix_gwp
    return find_electricity_mix(country_code)

with gr.Blocks(css=custom_css) as demo:
    gr.Markdown(HERO_TEXT)

    with gr.Tab("🧮 Calculator"):
        with gr.Row():
            gr.Markdown("# Estimate the environmental impacts of LLM inference")
        with gr.Row():
            input_provider = gr.Dropdown(
                PROVIDERS,
                label="Provider",
                value=PROVIDERS[0][1],
                filterable=True,
            )

            input_model = gr.Dropdown(
                OPENAI_MODELS,
                label="Model",
                value=OPENAI_MODELS[0][1],
                filterable=True,
            )
            input_provider.change(model_list, input_provider, input_model)

            input_prompt = gr.Dropdown(
                PROMPTS,
                label="Example prompt",
                value=400,
            )


        @gr.render(inputs=[input_provider, input_model, input_prompt])
        def render_simple(provider, model, prompt):
            if provider.startswith("huggingface_hub"):
                provider = provider.split("/")[0]
            if models.find_model(provider, model) is not None:
                impacts = llm_impacts(
                    provider=provider,
                    model_name=model,
                    output_token_count=prompt,
                    request_latency=100000
                )
                impacts = format_impacts(impacts)

                # Inference impacts
                with gr.Blocks():
                    if f"{provider}/{model}" in CLOSED_SOURCE_MODELS:
                        with gr.Row():
                            gr.Markdown("""<p> ⚠️ You have selected a closed-source model. Please be aware that 
                            some providers do not fully disclose information about such models. Consequently, our 
                            estimates have a lower precision for closed-source models. For further details, refer to 
                            our FAQ in the About section.
                            </p>""", elem_classes="warning-box")

                    with gr.Row():
                        gr.Markdown("""
                        ## Environmental impacts
                        
                        To understand how the environmental impacts are computed go to the 📖 Methodology tab. 
                        """)
                    with gr.Row():
                        with gr.Column(scale=1, min_width=220):
                            gr.Markdown(f"""
                            <h2 align="center">⚡️ Energy</h2>
                            $$ \Large {impacts.energy.magnitude:.3g} \ \large {impacts.energy.units} $$
                            <p align="center"><i>Evaluates the electricity consumption<i></p><br>
                            """)
                        with gr.Column(scale=1, min_width=220):
                            gr.Markdown(f"""
                            <h2 align="center">🌍️ GHG Emissions</h2>
                            $$ \Large {impacts.gwp.magnitude:.3g} \ \large {impacts.gwp.units} $$
                            <p align="center"><i>Evaluates the effect on global warming<i></p><br>
                            """)
                        with gr.Column(scale=1, min_width=220):
                            gr.Markdown(f"""
                            <h2 align="center">🪨 Abiotic Resources</h2>
                            $$ \Large {impacts.adpe.magnitude:.3g} \ \large {impacts.adpe.units} $$
                            <p align="center"><i>Evaluates the use of metals and minerals<i></p><br>
                            """)
                        with gr.Column(scale=1, min_width=220):
                            gr.Markdown(f"""
                            <h2 align="center">⛽️ Primary Energy</h2>
                            $$ \Large {impacts.pe.magnitude:.3g} \ \large {impacts.pe.units} $$
                            <p align="center"><i>Evaluates the use of energy resources<i></p><br>
                            """)

                # Impacts equivalents
                with gr.Blocks():
                    with gr.Row():
                        gr.Markdown("""
                        ---
                        ## That's equivalent to...
                        
                        Making this request to the LLM is equivalent to the following actions.
                        """)
                    with gr.Row():
                        physical_activity, distance = format_energy_eq_physical_activity(impacts.energy)
                        if physical_activity == PhysicalActivity.WALKING:
                            physical_activity = "🚶 " + physical_activity.capitalize()
                        if physical_activity == PhysicalActivity.RUNNING:
                            physical_activity = "🏃 " + physical_activity.capitalize()
                        with gr.Column(scale=1, min_width=300):
                            gr.Markdown(f"""
                            <h2 align="center">{physical_activity} $$ \Large {distance.magnitude:.3g}\ {distance.units} $$ </h2>
                            <p align="center"><i>Based on energy consumption<i></p><br>
                            """, latex_delimiters=[{"left": "$$", "right": "$$", "display": False}])

                        ev_eq = format_energy_eq_electric_vehicle(impacts.energy)
                        with gr.Column(scale=1, min_width=300):
                            gr.Markdown(f"""
                            <h2 align="center">🔋 Electric Vehicle $$ \Large {ev_eq.magnitude:.3g}\ {ev_eq.units} $$ </h2>
                            <p align="center"><i>Based on energy consumption<i></p><br>
                            """, latex_delimiters=[{"left": "$$", "right": "$$", "display": False}])

                        streaming_eq = format_gwp_eq_streaming(impacts.gwp)
                        with gr.Column(scale=1, min_width=300):
                            gr.Markdown(f"""
                            <h2 align="center">⏯️ Streaming $$ \Large {streaming_eq.magnitude:.3g}\ {streaming_eq.units} $$ </h2>
                            <p align="center"><i>Based on GHG emissions<i></p><br>
                            """, latex_delimiters=[{"left": "$$", "right": "$$", "display": False}])

                # Bigger scale impacts equivalent
                with gr.Blocks():
                    with gr.Row():
                        gr.Markdown("""
                        ## What if 1% of the planet does this request everyday for 1 year?
                        
                        If this use case is largely deployed around the world the equivalent impacts would be. (The 
                        impacts of this request x 1% of 8 billion people x 365 days in a year.)
                        """)
                    with gr.Row():
                        electricity_production, count = format_energy_eq_electricity_production(impacts.energy)
                        if electricity_production == EnergyProduction.NUCLEAR:
                            emoji = "☢️"
                            name = "Nuclear power plants"
                        if electricity_production == EnergyProduction.WIND:
                            emoji = "💨️ "
                            name = "Wind turbines"
                        with gr.Column(scale=1, min_width=300):
                            gr.Markdown(f"""
                            <h2 align="center">{emoji} $$ \Large {count.magnitude:.0f} $$ {name} <span style="font-size: 12px">(yearly)</span></h2>
                            <p align="center"><i>Based on electricity consumption<i></p><br>
                            """, latex_delimiters=[{"left": "$$", "right": "$$", "display": False}])

                        ireland_count = format_energy_eq_electricity_consumption_ireland(impacts.energy)
                        with gr.Column(scale=1, min_width=300):
                            gr.Markdown(f"""
                            <h2 align="center">🇮🇪 $$ \Large {ireland_count.magnitude:.2g} $$ x Ireland <span style="font-size: 12px">(yearly ⚡️ cons.)</span></h2>
                            <p align="center"><i>Based on electricity consumption<i></p><br>
                            """, latex_delimiters=[{"left": "$$", "right": "$$", "display": False}])

                        paris_nyc_airplane = format_gwp_eq_airplane_paris_nyc(impacts.gwp)
                        with gr.Column(scale=1, min_width=300):
                            gr.Markdown(f"""
                            <h2 align="center">✈️ $$ \Large {paris_nyc_airplane.magnitude:,.0f} $$ Paris ↔ NYC </h2>
                            <p align="center"><i>Based on GHG emissions<i></p><br>
                            """, latex_delimiters=[{"left": "$$", "right": "$$", "display": False}])

    with gr.Tab("🤓 Expert Mode"):

        with gr.Row():
            gr.Markdown("# 🤓 Expert mode")

        model = gr.Dropdown(
            MODELS + [CUSTOM],
            label="Model name",
            value="openai/gpt-3.5-turbo",
            filterable=True,
            interactive=True
        )
        input_model_active_params = gr.Number(
            label="Number of billions of active parameters",
            value=45.0,
            interactive=True
        )
        input_model_total_params = gr.Number(
            label="Number of billions of total parameters",
            value=45.0,
            interactive=True
        )

        model.change(fn=model_active_params_fn,
                     inputs=[model, input_model_active_params],
                     outputs=[input_model_active_params])
        model.change(fn=model_total_params_fn,
                     inputs=[model, input_model_total_params],
                     outputs=[input_model_total_params])
        input_model_active_params.input(fn=custom, outputs=[model])
        input_model_total_params.input(fn=custom, outputs=[model])

        input_tokens = gr.Number(
            label="Output tokens",
            value=100
        )

        mix = gr.Dropdown(
            COUNTRY_CODES + [CUSTOM],
            label="Location",
            value="WOR",
            filterable=True,
            interactive=True
        )
        input_mix_gwp = gr.Number(
            label="Electricity mix - GHG emissions [kgCO2eq / kWh]",
            value=find_electricity_mix('WOR')[2],
            interactive=True
        )
        input_mix_adpe = gr.Number(
            label="Electricity mix - Abiotic resources [kgSbeq / kWh]",
            value=find_electricity_mix('WOR')[0],
            interactive=True
        )
        input_mix_pe = gr.Number(
            label="Electricity mix - Primary energy [MJ / kWh]",
            value=find_electricity_mix('WOR')[1],
            interactive=True
        )

        mix.change(fn=mix_fn,
                   inputs=[mix, input_mix_adpe, input_mix_pe, input_mix_gwp],
                   outputs=[input_mix_adpe, input_mix_pe, input_mix_gwp])
        input_mix_gwp.input(fn=custom, outputs=mix)
        input_mix_adpe.input(fn=custom, outputs=mix)
        input_mix_pe.input(fn=custom, outputs=mix)


        @gr.render(inputs=[
            input_model_active_params,
            input_model_total_params,
            input_tokens,
            input_mix_gwp,
            input_mix_adpe,
            input_mix_pe
        ])
        def render_expert(
                model_active_params,
                model_total_params,
                tokens,
                mix_gwp,
                mix_adpe,
                mix_pe
        ):
            impacts = compute_llm_impacts_expert(
                model_active_parameter_count=model_active_params,
                model_total_parameter_count=model_total_params,
                output_token_count=tokens,
                request_latency=100000,
                if_electricity_mix_gwp=mix_gwp,
                if_electricity_mix_adpe=mix_adpe,
                if_electricity_mix_pe=mix_pe
            )
            impacts, usage, embodied = format_impacts_expert(impacts)

            with gr.Blocks():
				
                with gr.Row():
                    gr.Markdown(f"""
                                <h2 align = "center">Environmental impacts</h2>
                                """)
                
                with gr.Row():
                    with gr.Column(scale=1, min_width=220):
                        gr.Markdown(f"""
                        <h2 align="center">⚡️ Energy</h2>
                        $$ \Large {impacts.energy.magnitude:.3g} \ \large {impacts.energy.units} $$
                        <p align="center"><i>Evaluates the electricity consumption<i></p><br>
                        """)
                        
                    with gr.Column(scale=1, min_width=220):
                        gr.Markdown(f"""
                        <h2 align="center">🌍️ GHG Emissions</h2>
                        $$ \Large {impacts.gwp.magnitude:.3g} \ \large {impacts.gwp.units} $$
                        <p align="center"><i>Evaluates the effect on global warming<i></p><br>
                        $$ \Large {100*usage.gwp.value / (usage.gwp.value + embodied.gwp.value):.3} $$
                        <p align="center"><i>% of GWP by usage (vs embodied)<i></p><br>
                        """)
                        
                    with gr.Column(scale=1, min_width=220):
                        gr.Markdown(f"""
                        <h2 align="center">🪨 Abiotic Resources</h2>
                        $$ \Large {impacts.adpe.magnitude:.3g} \ \large {impacts.adpe.units} $$
                        <p align="center"><i>Evaluates the use of metals and minerals<i></p><br>
                        $$ \Large {100*usage.adpe.value / (usage.adpe.value + embodied.adpe.value):.3} $$
                        <p align="center"><i>% of ADPE by usage (vs embodied)<i></p><br>
                        """)
                        
                    with gr.Column(scale=1, min_width=220):
                        gr.Markdown(f"""
                        <h2 align="center">⛽️ Primary Energy</h2>
                        $$ \Large {impacts.pe.magnitude:.3g} \ \large {impacts.pe.units} $$
                        <p align="center"><i>Evaluates the use of energy resources<i></p><br>
                        $$ \Large {100*usage.pe.value / (usage.pe.value + embodied.pe.value):.3} $$
                        <p align="center"><i>% of PE by usage (vs embodied)<i></p><br>
                        """)

        with gr.Row():                
            gr.Markdown(f"""
                        <h2 align="center">How can location impact the footprint ?</h2>
                        """)
        
        with gr.Row():     
            gr.BarPlot(df_elec_mix_for_plot,
                       x='country',
                       y='electricity_mix',
                       sort='y',
                       scale=1,
                       height=250,
                       min_width=800,
                       x_title=None,
                       y_title='electricity mix in gCO2eq / kWh')

    # with gr.Tab("🔍 Evaluate your own usage"):

    #     with gr.Row():
    #         gr.Markdown("""
    #                     # 🔍 Evaluate your own usage
    #                     ⚠️ For now, only ChatGPT conversation import is available.
    #                     You can always try out other models - however results might be inaccurate due to fixed parameters, such as tokenization method.
    #                     """)
        
    #     def compute_own_impacts(amount_token, model):
    #         provider = model.split('/')[0].lower()
    #         model = model.split('/')[1]
    #         impacts = llm_impacts(
    #                 provider=provider,
    #                 model_name=model,
    #                 output_token_count=amount_token,
    #                 request_latency=100000
    #             )
            
    #         impacts = format_impacts(impacts)

    #         energy = f"""
    #                     <h2 align="center">⚡️ Energy</h2>
    #                     $$ \Large {impacts.energy.magnitude:.3g} \ \large {impacts.energy.units} $$
    #                     <p align="center"><i>Evaluates the electricity consumption<i></p><br>
    #                     """
            
    #         gwp = f"""
    #                     <h2 align="center">🌍️ GHG Emissions</h2>
    #                     $$ \Large {impacts.gwp.magnitude:.3g} \ \large {impacts.gwp.units} $$
    #                     <p align="center"><i>Evaluates the effect on global warming<i></p><br>
    #                     """
            
    #         adp = f"""
    #                     <h2 align="center">🪨 Abiotic Resources</h2>
    #                     $$ \Large {impacts.adpe.magnitude:.3g} \ \large {impacts.adpe.units} $$
    #                     <p align="center"><i>Evaluates the use of metals and minerals<i></p><br>
    #                     """
            
    #         pe = f"""
    #                     <h2 align="center">⛽️ Primary Energy</h2>
    #                     $$ \Large {impacts.pe.magnitude:.3g} \ \large {impacts.pe.units} $$
    #                     <p align="center"><i>Evaluates the use of energy resources<i></p><br>
    #                     """

    #         return energy, gwp, adp, pe
        
    #     def combined_function(text, model):
    #         n_token = process_input(text)
    #         energy, gwp, adp, pe = compute_own_impacts(n_token, model)
    #         return n_token, energy, gwp, adp, pe
        
    #     with gr.Blocks():

    #         text_input = gr.Textbox(label="Paste the URL here (must be on https://chatgpt.com/share/xxxx format)")
    #         model = gr.Dropdown(
    #                             MODELS,
    #                             label="Model name",
    #                             value="openai/gpt-4o",
    #                             filterable=True,
    #                             interactive=True
    #                         )

    #         process_button = gr.Button("Estimate this usage footprint")
            
    #         with gr.Accordion("ℹ️ Infos", open=False):
    #             n_token = gr.Textbox(label="Total amount of tokens :")

    #         with gr.Row():
    #             with gr.Column(scale=1, min_width=220):
    #                 energy = gr.Markdown()
    #             with gr.Column(scale=1, min_width=220):
    #                 gwp = gr.Markdown()
    #             with gr.Column(scale=1, min_width=220):
    #                 adp = gr.Markdown()
    #             with gr.Column(scale=1, min_width=220):
    #                 pe = gr.Markdown()

    #         process_button.click(
    #             fn=combined_function,
    #             inputs=[text_input, model],
    #             outputs=[n_token, energy, gwp, adp, pe]
    #         )

    with gr.Tab("📖 Methodology"):
        gr.Markdown(METHODOLOGY_TEXT,
                    elem_classes="descriptive-text",
                    latex_delimiters=[
                        {"left": "$$", "right": "$$", "display": True},
                        {"left": "$", "right": "$", "display": False}
                    ])

    with gr.Tab("ℹ️ About"):
        gr.Markdown(ABOUT_TEXT, elem_classes="descriptive-text",)

    with gr.Accordion("📚 Citation", open=False):
        gr.Textbox(
            value=CITATION_TEXT,
            label=CITATION_LABEL,
            interactive=False,
            show_copy_button=True,
            lines=len(CITATION_TEXT.split('\n')),
        )

    # License
    gr.Markdown(LICENCE_TEXT)

if __name__ == '__main__':
    demo.launch()