# Training | |
defaults: | |
- config | |
hydra: | |
run: | |
dir: ${train.train_dir} | |
dataset: | |
type: 'single' # 'single' or 'multi' | |
images: True | |
cache: True # load episodes to memory instead of reading from disk | |
augment: | |
theta_sigma: 60 # rotation sigma in degrees; N(mu = 0, sigma = theta_sigma). | |
train: | |
# folders | |
model_task: ${train.task} | |
exp_folder: exps | |
train_dir: ${root_dir}/${train.exp_folder}/${train.model_task}-${train.agent}-n${train.n_demos}-train | |
data_dir: ${root_dir}/data | |
# task configs | |
task: packing-boxes-pairs-seen-colors | |
agent: two_stream_full_clip_lingunet_lat_transporter | |
n_demos: 100 | |
n_steps: 61000 # original paper use 200000 for single task and use 601000 for multi-task models | |
# hyper params | |
n_rotations: 36 | |
batch_size: 8 | |
batchnorm: False # important: False because batch_size=1 | |
lr: 1e-4 | |
attn_stream_fusion_type: 'add' | |
trans_stream_fusion_type: 'conv' | |
lang_fusion_type: 'mult' | |
training_step_scale: 200 # How many epochs are needed. 100 data sample requires 20000 steps. -1 means ignored. | |
# script configs | |
gpu: -1 # -1 for all | |
log: False # log metrics and stats to wandb | |
n_val: 1 | |
val_repeats: 1 | |
save_steps: [1000, 2000, 3000, 4000, 5000, 7000, 10000, 20000, 40000, 80000, 120000, 160000, 200000, 300000, 400000, 500000, 600000, 800000, 1000000, 1200000] | |
load_from_last_ckpt: False # still change to True | |
# sim to real | |
data_augmentation: False # additional data augmentation for simtoreal | |
wandb: | |
run_name: 'cliport0' | |
logger: | |
entity: cliport | |
project: cliport | |
tags: [] | |
group: train | |
offline: False | |
saver: | |
upload: False | |
monitor: 'val_loss' |